
1

September 7, 2006 http://csg.csail.mit.edu/6.827/ L01-1

6.827 Multithreaded Parallelism:
Languages and Compilers

Fall 2006

Lecturer: Arvind
TA: Nirav Dave’
Assistant: Sally Lee

September 7, 2006 L01-2http://csg.csail.mit.edu/6.827/

IBM Power 5
130nm SOI CMOS with
Cu
389mm2

2GHz
276 million transistors
Dual processor cores
1.92 MB on-chip L2
cache
8-way superscalar
2-way simultaneous
multithreading

2

September 7, 2006 L01-3http://csg.csail.mit.edu/6.827/

Multi-cores are here

“Learn how the multi-core processor
architecture plays a central role in
Intel's platform approach. ….”
“AMD is leading the industry to multi-
core technology for the x86 based
computing market …”
“Sun's multicore strategy centers
around multi-threaded software. ... “Dual Processor Pentium

September 7, 2006 L01-4http://csg.csail.mit.edu/6.827/

How to use these cores?
One view

Windows 2010

Application

Spam filter

Virus detector

3

September 7, 2006 L01-5http://csg.csail.mit.edu/6.827/

Charecteristics

Hardware can support many (100s)
concurrent threads
But fine-grain synchronization is
expensive
Synchronization techniques are not
scalable

How to exploit this capability from software?

September 7, 2006 L01-6http://csg.csail.mit.edu/6.827/

Implicit Parallelism
Extract parallelism from (existing)
programs written in sequential
languages

Lot of research over four decades –
limited success

Program in functional languages
which may not obscure parallelism
in an algorithm

If the algorithm has no parallelism then forget it

4

September 7, 2006 L01-7http://csg.csail.mit.edu/6.827/

Why not use sequential
languages ?

Algorithm with parallelism

encode

Program with sequential semantics

detect parallelism

Parallel code

September 7, 2006 L01-8http://csg.csail.mit.edu/6.827/

If parallelism can’t be
detected automatically ...

High-level
Data parallel: Fortran 90, HPF, ...
Multithreaded: Cid, Cilk,..., Java

Id, pH, Sisal, ...

Low-level
Message passing: PVM, MPI, ...
Threads & synchronization:

Forks & Joins, Locks, Futures, ...

Design/use new explicitly parallel
programming models ...

5

September 7, 2006 L01-9http://csg.csail.mit.edu/6.827/

Data Parallel Programming Model

• All data structures are assigned to a
grid of virtual processors.

• Generally the owner processor computes
the data elements assigned to it.

• Global communication primitives allow
processors to exchange data.

• Implicit global barrier after each
communication.

• All processors execute the same program .

communicate
(global)

compute
(local)

communicate
(global)

compute
(local)

September 7, 2006 L01-10http://csg.csail.mit.edu/6.827/

Data Parallel Model
+ Good implementations are

available

- Difficult to write programs

+ Easy to debug programs
because of a single thread

+ Implicit synchronization
and communication

- Limited compositionality!

For general-purpose programming, which has more
unstructured parallelism, we need more flexibility in
scheduling.

communicate

compute

communicate

compute

?

6

September 7, 2006 L01-11http://csg.csail.mit.edu/6.827/

Fully Parallel, Multithreaded Model
Global Heap of
Shared Objects

Tree of
Activation
Frames

h:g:

f:

loop

active
threads

asynchronous
at all levels

September 7, 2006 L01-12http://csg.csail.mit.edu/6.827/

Explicit vs Implicit Multithreading

Explicit
C + forks + joins + locks

multithreaded C: Cid, Cilk, ..., Java,
Easy path for exploiting coarse-grain
parallelism in existing codes

error-prone if locks are used

Implicit
languages that specify only a partial order
on operations

functional languages: Id, pH,...

Safe, high-level, but difficult to implement
efficiently without shared memory & ...

7

September 7, 2006 L01-13http://csg.csail.mit.edu/6.827/

Only reason for parallel programming
used to be performance

This made programming very difficult
Had to know a lot about the machine
Codes were not portable – endless
performance tuning on each machine
Parallel libraries were not composable
Difficult to deal with heap structures and
memory hierarchy
Synchronization costs were too high to
exploit fine-grain parallelism

Has the situation changed?

September 7, 2006 L01-14http://csg.csail.mit.edu/6.827/

Current Cellphone Architecture

Comms.
Processing

Application
Processing

WLAN RFWLAN RF WLAN RFWCDMA/GSM RF

Com
plex, H

ig
h

Perfo
rm

ance

but m
ust

 n
ot d

iss
ip

ate

m
ore

 th
an 3

 w
atts

Today’s chip becomes a block
in tomorrow’s chip

IP reuse is essential

Hardware/software migration

8

September 7, 2006 L01-15http://csg.csail.mit.edu/6.827/

data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

IP re-use sounds great until
you try it...

Example: Commercially available
FIFO IP block

These constraints are spread over many pages of
the documentation...

No machine verific
ation of su

ch

informal co
nstra

ints is
 feasible

September 7, 2006 http://csg.csail.mit.edu/6.827/ L01-16

What is needed is a way to
assemble (parallel) systems
from well designed
components

9

September 7, 2006 L01-17http://csg.csail.mit.edu/6.827/

Sequential vs Concurrent
Programming

Three examples
GCD
Inserting in an ordered list
802.11a

September 7, 2006 L01-18http://csg.csail.mit.edu/6.827/

Terms
GCD(x,y), integers

Rewrite rules
GCD(x, y) ⇒ GCD(y, x) if x>y, y≠0 (R1)
GCD(x, y) ⇒ GCD(x, y-x) if x≤ y, y≠0 (R2)

Initial term
GCD(initX,initY)

Execution

Programming with rules:
Example Euclid’s GCD

GCD(6, 15) ⇒ GCD(6, 9) ⇒ GCD(6, 3) ⇒

GCD(3, 6) ⇒ GCD(3, 3) ⇒ GCD(3, 0)

R2 R2 R1

R2 R2

10

September 7, 2006 L01-19http://csg.csail.mit.edu/6.827/

Suppose we want to build a
GCD machine (i.e., IP module)

GCD

GCD is a function, so parallel evaluations can be done safely
Recursive calls vs Independent calls
Resource sharing

Does the answer come out immediately or in predictable time
Can the machine be shared?
Can it be pipelined, i.e., accept another input before the first one has
produced an answer

September 7, 2006 L01-20http://csg.csail.mit.edu/6.827/

module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap when ((x>y)&&(y!=0)) ==>
x <= y; y <= x;

endrule
rule subtract when ((x<=y)&&(y!=0))==>

y <= y – x;
endrule

method Action start(int a, int b) when (y==0) ==>
x <= a; y <= b;

endmethod
method int result() when (y==0);

return x;
endmethod

endmodule

Internal
behavior

GCD in Bluespec

External
interface

State typedef int Int#(32)

Assumes x /= 0 and y /= 0

x y

swap sub

11

September 7, 2006 L01-21http://csg.csail.mit.edu/6.827/

rdy
enab

int

int
rdy

st
ar

t
re

su
lt

G
C
D

m
o
d
u
le

int

y == 0

y == 0

implicit
conditions

interface I_GCD;
method Action start (int a, int b);
method int result();

endinterface

GCD Hardware Module
t

#(type t)

t

t

t t
t

In a GCD call t
could be
Int#(32),
UInt#(16),
Int#(13), ...

The module can easily be made polymorphic

Many different implementations can provide the same
interface: module mkGCD (I_GCD)

September 7, 2006 L01-22http://csg.csail.mit.edu/6.827/

Insert in a sorted list

A functional program
insert x [] = [x]

insert x (y:ys) =
if x < y then x:(y:ys)

else (y: (insert x ys))

The following program makes perfect sense:
Let ys1 = insert x1 ys;

ys2 = insert x2 ys1;
ys3 = insert x3 ys2

in ys3

Can these
insertions be
done
concurrently ?

12

September 7, 2006 L01-23http://csg.csail.mit.edu/6.827/

Pipelined insertions

Free list

List ptr
memory

CurQ
(pending work, holds
<value, free cell, list >
triples

in
sert

d
elete

September 7, 2006 L01-24http://csg.csail.mit.edu/6.827/

Insert method

method Actionvalue insert(x, ys);
let cell <- freelist.pop();
if (ys == nil) then

begin mem.upd(cell, tuple2(x, ys)); return(cell); end
else

begin (y, ys’) = mem.sub(ys);
if (x < y) begin mem.upd(cell, tuple2(x, ys));

return(cell); end
else // not smallest so enqueue for a recursive call

begin curQ.enq(tuple3(x, cell, ys’));
return(ys); end

end
endmethod

13

September 7, 2006 L01-25http://csg.csail.mit.edu/6.827/

Internal rule

rule oneStep_insert(True);
(x, cell, ys) <- curQ.pop();
if (ys == nil) mem.upd(cell, tuple2(x,ys));
else begin

(y, ys’) = mem.sub(ys);
if (x < y) mem.upd(cell,tuple2(x,ys));
else curQ.enq(tuple3(x,cell,ys’))

end
endrule

September 7, 2006 L01-26http://csg.csail.mit.edu/6.827/

Correctness?

Does the following program work?
let ys1 = heap.insert(x1,ys);

ys2 = heap.insert(x2,ys1);
ys3 = heap.insert(x3,ys2)

in ys3

How about?
let ys1 = heap.insert(x1,ys);

ys2 = heap.insert(x2,ys);
ys3 = heap.insert(x3,ys)

in ys3

14

September 7, 2006 L01-27http://csg.csail.mit.edu/6.827/

802.11a Transmitter Overview

Controller Scrambler Encoder

Interleaver Mapper

IFFT
Cyclic
Extend

headers

data

IFFT Transforms 64 (frequency domain)
complex numbers into 64 (time domain)

complex numbers accounts for > 95% area

24
Uncoded

bits

One OFDM symbol
(64 Complex Numbers)

Must produce
one OFDM
symbol every
4 μsec

Depending
upon the
transmission
rate,
consumes 1,
2 or 4 tokens
to produce
one OFDM
symbol

September 7, 2006 L01-28http://csg.csail.mit.edu/6.827/

802.11a Observation

Dataflow network
aka Kahn networks

How should this level of
concurrency be expressed in a
reference code (say in C or
systemC?
Can we write Specs which work for
both hardware and software

15

September 7, 2006 L01-29http://csg.csail.mit.edu/6.827/

Dream

A time when Freshmen will be taught
sequential programming as a special case

of parallel programming

September 7, 2006 L01-30http://csg.csail.mit.edu/6.827/

This subject is about
The foundations of functional languages:

the λ calculus, types, monads, confluence,
operational semantics, TRS...

General purpose implicit parallel programming
in Haskell & pH
Parallel programming based on atomic actions
or transactions in Bluespec
Dataflow model of computation

and understanding connections ...

Bluespec and pH borrow heavily from functional languages
but have completely different execution models

16

September 7, 2006 L01-31http://csg.csail.mit.edu/6.827/

Multithreaded C

pH: Implicit Parallel Programming

Multithreaded
Intermediate Language

pH: parallel Haskell
(Types, Higher-order functions,

I-structures, M-structures)

front-end compilation Dataflow and multithreaded
compilation model

code generation

R.S.Nikhil, Arvind &
many brilliant students
@ MIT mid 80’s to 90’s

SMP’s Clusters

September 7, 2006 L01-32http://csg.csail.mit.edu/6.827/

Object code
(Verilog/C)

Bluespec: Two-Level Compilation

Rules and Actions
(Term Rewriting System)

• Rule conflict analysis
• Rule scheduling

James Hoe & Arvind
@MIT 1997-2000

Bluespec
(Objects, Types,

Higher-order functions)

Level 1 compilation
• Type checking
• Massive partial evaluation

and static elaboration

Level 2 synthesis

Lennart Augustsson
@Sandburst 2000-2002

17

September 7, 2006 L01-33http://csg.csail.mit.edu/6.827/

6.827 Grade Breakdown

Three Home Works 25%
Quiz-1 25%
Quiz-2 25%
Quiz-3 or Final Project 25%

Quizzes – Closed book, no collaboration
Homework – Collaboration encouraged – groups of two
Project - Collaboration encouraged – groups of two

