
1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L02-1September 12, 2006 http://www.csg.csail.mit.edu/6.827

Functional Programming:
Functions and Types

September 12, 2006

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-2

Explicitly Parallel Fibonacci

cilk int fib (int n)
{if (n < 2)

return n;
else
{int x, y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return x + y;

}
}

int fib (int n)
{if (n < 2)
return n;
else
return
fib(n-1)+fib(n-2);
}

}

C code Cilk code

C dictates that fib(n-1) be executed before fib(n-2)
⇒ annotations (spawns and sync) for parallelism

Alternative: declarative languages

2

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-3

Why Declarative Programming?

• Implicit Parallelism
– language only specifies a partial order on operations

• Powerful programming idioms and efficient
code reuse
– Clear and relatively small programs

• Declarative language semantics have good
algebraic properties
– Compiler optimizations go farther than in imperative

languages

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-4

pH (parallel Haskell): An Implicitly
Parallel & Layered Language

cleaner semantics

more expressive power

Non-Deterministic Extensions
- M-structures

Deterministic Extensions
- I-structures

Purely Functional
- higher order
- non strict
- strongly typed + polymorphic

Haskell

3

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-5

Function Execution by Substitution

plus x y = x + y

1. plus 2 3 → 2 + 3 → 5

2. plus (2*3) (plus 4 5)

→ plus 6 (4+5)

→ plus 6 9

→ 6 + 9

→ 15

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-6

Confluence

All Functional pH programs (right or wrong)
have repeatable behavior

4

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-7

Blocks

let
x = a * a
y = b * b

in
(x - y)/(x + y)

• a variable can have at most one definition
in a block

• ordering of bindings does not matter

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-8

Layout Convention

This convention allows us to omit many delimiters

let
x = a * a
y = b * b

in
(x - y)/(x + y)

is the same as

let
{ x = a * a ;

y = b * b ;}
in

(x - y)/(x + y)

5

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-9

Lexical Scoping

let
y = 2 * 2
x = 3 + 4
z = let

x = 5 * 5
w = x + y * x

in
w

in
x + y + z

Lexically closest definition of a variable prevails.

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-10

Renaming Bound Identifiers
(α-renaming)

let
y = 2 * 2
x = 3 + 4
z = let

x = 5 * 5
w = x + y * x

in
w

in
x + y + z

≡

let
y = 2 * 2
x = 3 + 4
z = let

x’ = 5 * 5
w = x’ + y * x’

in
w

in
x + y + z

6

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-11

Lexical Scoping and α-renaming

plus x y = x + y

plus' a b = a + b

plus and plus' are the same because plus'
can be obtained by systematic renaming of
bound identifiers of plus

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-12

Capture of Free Variables

f x = . . .
g x = . . .
foo f x = f (g x)

Suppose we rename the bound identifier f to g
in the definition of foo

foo' g x = g (g x)

foo ≡ foo' ?

7

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-13

Curried functions

plus x y = x + y

let
f = plus 1

in
f 3

→ (plus 1) 3 → 1 + 3 → 4

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-14

Local Function Definitions

integrate dx a b f =
let

sum x tot =
if x > b then tot
else sum (x+dx) (tot+(f x))

in
(sum (a+dx/2) 0) * dx

Free
variables
of sum
?

f(x)

a bx

dx

Integral(a,b) = (f(a + dx/2) + f(a + 3dx/2) + ...)  dx

integrate
f(x) from a
to b using
trapezoidal
rule

Any function definition can be “closed”

8

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-15

Loops (Tail Recursion)

• Loops or tail recursion is a restricted form of
recursion but it is adequate to represent a
large class of common programs.

– Special syntax can make loops easier to read and write
– Loops can often be implemented with greater efficiency

integrate dx a b f =
let

x = a + dx/2
tot = 0

in
(while x <= b do

next x = x + dx
next tot = tot + (f x)

finally tot) * dx

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-16

Types

All expressions in pH have a type

23 :: Int

"23 belongs to the set of integers"
"The type of 23 is Int"

true :: Bool
"hello" :: String

9

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-17

Type of an expression

(sq 529) :: Int
sq :: Int -> Int

"sq is a function, which when applied to an integer
produces an integer."

"Int -> Int is the set of functions which when
applied to an integer produce an integer."

"The type of sq is Int -> Int."

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-18

Type of a Curried Function

plus x y = x + y

(plus 1) 3 :: Int

(plus 1) :: Int -> Int

plus :: ?

10

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-19

λ-Abstraction

Lambda notation makes it explicit that a value
can be a function. Thus,

(plus 1) can be written as \y -> (1 + y)

plus x y = x + y

can be written as

plus = \x -> \y -> (x + y)
or as

plus = \x y -> (x + y)

(In Haskell \x is a syntactic approximation of λx)

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-20

Parentheses Convention

f e1 e2 ≡ ((f e1) e2)

f e1 e2 e3 ≡ (((f e1) e2) e3)

application is left associative

Int -> (Int -> Int) ≡ Int -> Int -> Int

type constructor “->” is right associative

11

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-21

Type of a Block

(let
x1 = e1
.
.
.
xn = en

in
e) :: t

provided
e :: t

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-22

Type of a Conditional

(if e then e1 else e2) :: t

provided

e :: Bool
e1 :: t
e2 :: t

The type of expressions in both branches
of conditional must be the same.

12

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-23

Polymorphism

twice f x = f (f x)

1. twice (plus 3) 4

twice :: ?
2. twice (appendR "two") "Desmond"

twice :: ?

where appendR “baz" “foo" → "foobaz"

→ (Plus 3) ((plus 3) 4)
→ ((plus 3) 7)
→ 10

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-24

Deducing Types

1. Assign types to every subexpression
x :: t0 f :: t1

f x :: t2 f (f x) :: t3
⇒ twice :: t1 -> (t0 -> t3)

twice f x = f (f x)
What is the most "general type" for twice?

2. Set up the constraints
t1 = t0 -> t2 because of (f x)
t1 = because of f (f x)

3. Resolve the constraints

13

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-25

Another Example: Compose

compose f g x = f (g x)
What is the type of compose ?

1. Assign types to every subexpression
x :: t0 f :: t1 g :: t2

g x :: t3 f (g x) :: t4
⇒ compose :: t1 -> t2 -> t0 -> t4

2. Set up the constraints
t1 = t3 -> t4 because of f (g x)
t2 = t0 -> t3 because of (g x)

3. Resolve the constraints
⇒ compose ::

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-26

Now for some fun

twice f x = f (f x)

1. twice1 (twice2 succ) 4

twice1 ::
twice2 ::

2. twice3 twice4 succ 4

twice3 ::
twice4 ::

The first person with the right types gets a prize!

same?

same?

14

September 12, 2006 http://www.csg.csail.mit.edu/6.827 L02-27

Hindley-Milner Type System

pH and most modern functional languages follow
the Hindley-Milner type system.

The main source of polymorphism in this system
is the Let block.

The type of a variable can be instantiated
differently within its lexical scope.

much more on this later ...

