Functional Programming: Functions and Types

Arvind
Computer Science and Artificial Intelligence Laboratory M.I.T.

September 12, 2006

Explicitly Parallel Fibonacci

C dictates that fib(n-1) be executed before fib(n-2)
\Rightarrow annotations (spawns and sync) for parallelism
Alternative: declarative languages

Why Declarative Programming?

- Implicit Parallelism
- language only specifies a partial order on operations
- Powerful programming idioms and efficient code reuse
- Clear and relatively small programs
- Declarative language semantics have good algebraic properties
- Compiler optimizations go farther than in imperative languages
pH (parallel Haskell): An Implicitly Parallel \& Layered Language

| Non-Deterministic Extensions
 - M-structures |
| :--- | :--- |
| Deterministic Extensions
 - I-structures |
| Purely Functional
 - higher order
 - non strict
 - strongly typed + polymorphic |

cleaner semantics
$\xrightarrow[\text { more expressive power }]{ }$

Function Execution by Substitution

$$
\text { plus } x \quad y=x+y
$$

1. plus $23 \rightarrow 2+3 \rightarrow 5$
2. plus (2*3) (plus 4 5)
\rightarrow plus 6 (4+5)
\rightarrow plus 69
$\rightarrow 6+9$
$\rightarrow 15$

Confluence

All Functional pH programs (right or wrong) have repeatable behavior

Blocks

$$
\begin{aligned}
& \text { let } \\
& \quad \begin{array}{l}
x=a * a \\
y=b * b \\
(x-y) /(x+y)
\end{array}
\end{aligned}
$$

- a variable can have at most one definition in a block
- ordering of bindings does not matter

Layout Convention

This convention allows us to omit many delimiters

$$
\begin{aligned}
& \text { let } \\
& \quad \begin{array}{l}
x=a * a \\
y=b * b \\
\\
\text { in } \\
(x-y) /(x+y)
\end{array}
\end{aligned}
$$

is the same as

$$
\begin{aligned}
& \text { let } \\
& \begin{array}{rlll}
\left\{\begin{array}{llll}
x= & * & a & j \\
y= & * & b & i
\end{array}\right\} \\
(x-y) /(x+y)
\end{array}
\end{aligned}
$$

Lexical Scoping

```
let
            \(y=2\) * 2
            \(x=3+4\)
            z = let
                \(x=5\) * 5
                    \(\mathrm{w}=\mathrm{x}+\mathrm{y}\) * x
                    in
                    w
in
    \(x+y+z\)
```

Lexically closest definition of a variable prevails.

Renaming Bound Identifiers (α-renaming)

$$
\begin{aligned}
& \text { let } \\
& y=2 \text { * } 2 \\
& \text { x = } 3 \text { + } 4 \\
& \text { let } \\
& \text { z = let } \\
& y=2 \text { * } 2 \\
& x=5 \text { * } 5 \\
& \text { w }=x+y \text { * } x \\
& \text { w } \\
& x=3+4 \\
& \mathrm{X}=5 \text { * } 5 \equiv \mathrm{X}=1 \mathrm{x}^{\prime}=5 \text { *5 } \\
& \text { in } \\
& \text { in }^{\text {w }}=x^{\prime}+y^{*} x^{\prime} \\
& \text { in } \\
& \text { in } x+y+z \\
& \text { in } \\
& \text { W } \\
& x+y+z
\end{aligned}
$$

Lexical Scoping and α-renaming

$$
\begin{aligned}
& \text { plus } x=x+y \\
& \text { plus' } a b=a+b
\end{aligned}
$$

plus and plus' are the same because plus' can be obtained by systematic renaming of bound identifiers of plus

Capture of Free Variables

$$
\begin{aligned}
& f x=. \\
& g x=: \\
& \text { foo }=\dot{x}=\dot{f}(g x)
\end{aligned}
$$

Suppose we rename the bound identifier \mathbf{f} to \mathbf{g} in the definition of foo

$$
\begin{aligned}
& \text { foo' } g x=g(g x) \\
& \text { foo } \equiv \text { foo' }
\end{aligned}
$$

Curried functions

$$
\begin{aligned}
& \text { plus } x \quad y=x+y \\
& \text { let } f=\text { plus } 1 \\
& \text { in } 3 \\
& \rightarrow \text { (plus } 1) 3 \rightarrow 1+3 \rightarrow 4
\end{aligned}
$$

Local Function Definitions

Any function definition can be "closed"

Loops (Tail Recursion)

- Loops or tail recursion is a restricted form of recursion but it is adequate to represent a large class of common programs.
- Special syntax can make loops easier to read and write
- Loops can often be implemented with greater efficiency

```
integrate \(d x\) a \(b \mathbf{f}=\)
    let
        \(x=a+d x / 2\)
            tot \(=0\)
        in
            (while x <= b do
            next \(\mathrm{x}=\mathrm{x}+\mathrm{dx}\)
            next tot \(=\) tot \(+(f x)\)
            finally tot) * dx
```


Types

All expressions in pH have a type

$$
23 \text { : : Int }
$$

"23 belongs to the set of integers"
"The type of $\mathbf{2 3}$ is Int"
true : : Bool
"hello" : : String

Type of an expression

(sq 529) : : Int
sq : : Int -> Int
"sq is a function, which when applied to an integer produces an integer."
"Int -> Int is the set of functions which when applied to an integer produce an integer."
"The type of sq is Int -> Int."

Type of a Curried Function

$$
\text { plus } x \quad y=x+y
$$

(plus 1) 3 : : Int
(plus 1) :: Int -> Int
plus
: :
$?$

λ-Abstraction

Lambda notation makes it explicit that a value can be a function. Thus,
(plus 1) can be written as $\backslash y->(1+y)$
plus $x \quad y=x+y$
can be written as
plus $=\backslash x->$ \y $->(x+y)$
or as
plus $=\backslash x$ y $->(x+y)$
(In Haskell $\backslash \mathbf{x}$ is a syntactic approximation of $\lambda \mathbf{x}$)

Parentheses Convention

```
f e1 e2 \equiv ((f e1) e2)
f e1 e2 e3 \equiv(((f e1) e2) e3)
```

application is left associative

Int -> (Int -> Int) \equiv Int -> Int -> Int type constructor "->" is right associative

Type of a Block

provided

$$
\mathbf{e} \quad:: \quad \text { t }
$$

Type of a Conditional

```
(if e then ( }\mp@subsup{\mathbf{1}}{1}{}\mathrm{ else ( }\mp@subsup{\mathbf{2}}{2}{\prime}\mathrm{ ) :: t
```

provided

e	$::$	Bool
\mathbf{e}_{1}	$::$	t
\mathbf{e}_{2}	$::$	t

The type of expressions in both branches of conditional must be the same.

Polymorphism

$$
\text { twice } f x=f(f x)
$$

1. twice (plus 3) 4
```
\(\rightarrow\) (Plus 3) ((plus 3) 4)
    \(\rightarrow((\) plus 3) 7)
    \(\rightarrow \quad 10\)
    twice : :
2. twice (appendR "two") "Desmond"
twice : :
where appendR "baz" "foo" \(\rightarrow\) "foobaz"

\section*{Deducing Types}
twice \(f x=f(f x)\)
What is the most "general type" for twice?
1. Assign types to every subexpression
\[
x:: \text { t0 fo: t1 }
\]
\(f x:: t 2 \quad f(f x):: ~ t 3\) \(\Rightarrow\) twice : : t1 -> (t0 -> t3)
2. Set up the constraints
\[
\begin{array}{ll}
\mathrm{t1}=\mathrm{t0}->\mathrm{t} 2 & \text { because of }(f x) \\
\mathrm{t} 1= & \\
\text { because of } f(f x)
\end{array}
\]
3. Resolve the constraints

\section*{Another Example: Compose}
compose \(f g x=f(g x)\)
What is the type of compose ?
1. Assign types to every subexpression
\(x\) :: t0 f : : t1 \(\quad\) : : t2
\(g x:: t 3 \quad f(g x):: t 4\)
\(\Rightarrow\) compose : : t1 -> t2 -> t0 -> t4
2. Set up the constraints
\[
\begin{array}{ll}
\mathrm{t} 1=\mathrm{t} 3->\mathrm{t} 4 & \text { because of } \mathrm{f}(\mathrm{gx}) \\
\mathrm{t} 2=\mathrm{t0}->\mathrm{t} 3 & \text { because of }(\mathrm{g} x)
\end{array}
\]
3. Resolve the constraints
\(\Rightarrow\) compose : :

\section*{Now for some fun}
\[
\text { twice } f x=f(f x)
\]
1. twice \(_{1}\) (twice \({ }_{2}\) succ) 4
```

twice}\mp@subsup{1}{1}{::
twice 2 ::

```
same?
2. twice \(_{3}\) twice \(_{4}\) succ 4
\[
\begin{aligned}
& \text { twice }_{3}:: \\
& \text { twice }_{4}:
\end{aligned}
\]

The first person with the right types gets a prize!

\section*{Hindley-Milner Type System}
pH and most modern functional languages follow the Hindley-Milner type system.

The main source of polymorphism in this system is the Let block.

The type of a variable can be instantiated differently within its lexical scope.
much more on this later ...```

