λ-calculus:
 A Basis for Functional Languages

Arvind
Computer Science and Artificial Intelligence Laboratory M.I.T.

September 14, 2006

Functions

f may be viewed as

- a set of ordered pairs $<d, r>$ where $d \varepsilon D$ and $r \& R$
- a method of computing value r corresponding to argument d
some important notations
- λ-calculus (Church)
- Turing machines (Turing)
- Partial recursive functions

The λ-calculus:
 a simple type-free language

- to express all computable functions
- to directly express higher-order functions
- to study evaluation orders, termination, uniqueness of answers...
- to study various typing systems
- to serve as a kernel language for functional languages
- However, λ-calculus extended with constants and letblocks is more suitable

λ-notation

- a way of writing and applying functions without having to give them names
- a syntax for making a function expression from any other expression
- the syntax distinguishes between the integer "2" and the function "always_two" which when applied to any integer returns 2
always_two x = 2;

Pure λ-calculus: Syntax

$\mathrm{E}=\mathrm{x}|\lambda \times . \mathrm{E}| \mathrm{E} \mathrm{E}$
variable abstraction application

1. application
$\overbrace{\text { unction }}^{\mathrm{E}_{1}} \underbrace{\mathrm{E}_{2}}_{\text {argument }}$

- application is left associative
$E_{1} E_{2} E_{3} E_{4} \equiv\left(\left(\left(E_{1} E_{2}\right) E_{3}\right) E_{4}\right)$

2. abstraction

bound variable body
or formal parameter

- the scope of the dot in an abstraction extends as far to the right as possible

$$
\lambda x \cdot x y \equiv \lambda x \cdot(x y) \equiv(\lambda x \cdot(x y)) \equiv(\lambda x \cdot x y) \neq(\lambda x \cdot x) y
$$

Free and Bound Variables

- λ-calculus follows lexical scoping rules
- Free variables of an expression

$\operatorname{FV}(x)$	$=\{x\}$
$\operatorname{FV}\left(E_{1} E_{2}\right)$	$=\operatorname{FV}\left(E_{1}\right) \cup \operatorname{FV}\left(E_{2}\right) \quad ?$
$\operatorname{FV}(\lambda x . E)$	$=\operatorname{FV}(E)-\{x\}$

- A variable occurrence which is not free in an expression is said to be a bound variable of the expression
- combinator: a λ-expression without free variables, aka closed λ-expression

ß-substitution

$(\lambda x . E) E_{a} \rightarrow E\left[E_{a} / x\right]$
replace all free occurrences of x in E with E_{a}
$E[A / x]$ is defined as follows by case on E :
variable

$$
\begin{array}{ll}
y\left[E_{a} / x\right]=E_{a} & \text { if } x=y \\
y\left[E_{a} / x\right]=y & \text { otherwise } \\
y
\end{array}
$$

application

$$
\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)\left[\mathrm{E}_{\mathrm{a}} / \mathrm{x}\right]=\left(\mathrm{E}_{1}\left[\mathrm{E}_{\mathrm{a}} / \mathrm{x}\right] \quad \mathrm{E}_{2}\left[\mathrm{E}_{\mathrm{a}} / \mathrm{x}\right]\right) \quad ?
$$ abstraction

$$
\begin{aligned}
&\left(\lambda y \cdot E_{1}\right)\left[E_{a} / x\right] \text { if } x \equiv y \\
&\left(\lambda y \cdot E_{1}\right)\left[E_{a} / x\right]
\end{aligned}=\begin{array}{cc}
\lambda z \cdot E_{1} \\
\quad \begin{array}{c}
\lambda z \cdot\left(\left(E_{1}[z / y]\right)\left[E_{a} / x\right]\right) \\
\\
\text { where } z \notin F V\left(E_{1}\right) \cup F V\left(E_{a}\right) \cup F V(x)
\end{array}
\end{array}
$$

ß-substitution: an example

$$
\begin{aligned}
& (\lambda p \cdot p(p q))[(a p b) / q] \\
\rightarrow \quad & (\lambda z \cdot z(z q))[(a p b) / q] \\
\rightarrow \quad & (\lambda z \cdot z(z(a p b)))
\end{aligned}
$$

λ-Calculus as a Reduction System

Syntax
$E=x|\lambda x . E| E E$
Reduction Rule
α-rule: $\quad \lambda x . E \rightarrow \lambda y . E[y / x] \quad$ if $y \notin F V(E)$
β-rule: $\quad(\lambda x . E) \mathrm{E}_{\mathrm{a}} \rightarrow \mathrm{E}\left[\mathrm{E}_{\mathrm{a}} / \mathrm{x}\right]$
η-rule: $(\lambda x . E x) \rightarrow E \quad$ if $x \notin F V(E)$
Redex
($\lambda x . E) E_{a}$
Normal Form
An expression without redexes

α and η Rules

α-rule says that the bound variables can be renamed systematically:

$$
(\lambda x \cdot x(\lambda x \cdot a \quad x)) b \equiv(\lambda y \cdot y(\lambda x \cdot a x)) b
$$

η-rule can turn any expression, including a constant, into a function:

$$
\lambda x . \mathrm{a} x \quad \rightarrow_{\eta} \quad \mathrm{a}
$$

η-rule does not work in the presence of types

A Sample Reduction

$$
\begin{aligned}
C & \equiv \lambda x . \lambda y . \lambda f . f x y \\
H & \equiv \lambda f . f(\lambda x . \lambda y . x) \\
T & \equiv \lambda f . f(\lambda x . \lambda y . y)
\end{aligned}
$$

What is $\mathrm{H}(\mathrm{C} \mathrm{a} \mathrm{b})$?

$$
\begin{aligned}
& \rightarrow \quad(\lambda f . f(\lambda x \cdot \lambda y \cdot x))(C a b) \\
& \rightarrow \quad(C a \operatorname{b})(\lambda x \cdot \lambda y \cdot x) \\
& \rightarrow \quad(\lambda x \cdot \lambda y \cdot x) a b \\
& \rightarrow \quad(\lambda y \cdot a) b \\
& \rightarrow \quad a
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{H}\left(\begin{array}{lll}
\mathrm{C} & \mathrm{~b}) & \rightarrow \\
\mathrm{T}(\mathrm{C} & \mathrm{a} & \mathrm{~b})
\end{array}\right. & \rightarrow & \mathrm{b}
\end{array}
$$

Integers: Church's Representation

$$
\begin{aligned}
& 0 \equiv \lambda x \cdot \lambda y \cdot y \\
& 1 \equiv \lambda x \cdot \lambda y \cdot x y \\
& 2 \equiv \lambda x \cdot \lambda y \cdot x(x y) \\
& \cdots \\
& n \equiv \lambda x \cdot \lambda y \cdot x(x \ldots(x y) \ldots)
\end{aligned}
$$

succ ?
If n is an integer, then (n a b) gives n nested a's followed by b
$\Rightarrow \quad$ the successor of n should be a (n a b)
succ $\equiv \lambda \mathrm{n} . \lambda \mathrm{a} . \lambda \mathrm{b} . \mathrm{a}(\mathrm{n}$ a b)
plus $\quad \equiv \lambda \mathrm{m} . \lambda \mathrm{n}$.m succ n
mul $\equiv \lambda m . \lambda n$.m (plus n) 0

Booleans and Conditionals

$$
\begin{aligned}
& \text { True } \equiv \lambda x . \lambda y . x \\
& \text { False } \equiv \lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{y} \\
& \text { zero? } \quad \equiv \lambda \mathrm{n} . \mathrm{n}(\lambda y . F a l s e) \text { True } \\
& \text { zero? } 0 \rightarrow \text { (} \lambda x . \lambda y . y) \text { (} \lambda y . \text { False) True ? } \\
& \rightarrow(\lambda y . y) \text { True } \\
& \rightarrow \text { True } \\
& \text { zero? } 1 \rightarrow \text { (} \lambda x . \lambda y . x y)(\lambda y . F a l s e) \text { True ? } \\
& \rightarrow \text { (} \lambda \text { y.False) True } \\
& \rightarrow \text { False } \\
& \text { cond } \equiv \lambda b . \lambda \times . \lambda y . b \times y \\
& \text { cond True } \mathrm{E}_{1} \mathrm{E}_{2} \rightarrow \mathrm{E}_{1} \quad \text { ? } \\
& \text { cond False } \mathrm{E}_{1} \mathrm{E}_{2} \rightarrow \mathrm{E}_{2} \text { ? }
\end{aligned}
$$

Recursion ?

fact $n=i f(n=0)$ then 1 else n * fact ($\mathrm{n}-1$)

- Assuming suitable combinators, fact can be rewritten as:
fact $=\lambda n$. cond $($ zero? $n) 1($ mul $n($ fact $($ sub $n 1)))$
- How do we get rid of the fact on the RHS?

Suppose
$H=\lambda f . \lambda n$. cond (zero? n) $1($ mul $n(f($ sub $n 1)))$
then fact $=\mathrm{H}$ fact
--- fact is a solution of this equation???
more on recursion in the next lecture

Choosing Redexes

1. (($\lambda \mathrm{x} . \mathrm{M}) \mathrm{A})((\lambda \mathrm{x} . \mathrm{N}) \mathrm{B})$
$-----\rho_{1}----------\rho_{2}-----$
2. $((\lambda x . M)((\lambda y . N) B))$ $-----\rho_{2}------$

Does ρ_{1} followed by $\rho_{.2}$ produce the same expression as ρ_{2} followed by ρ_{1} ?

Notice in the second example ρ_{1} can destroy or duplicate ρ_{2}.

Church-Rosser Property

A reduction system is said to have the Church-Rosser property, if $E \rightarrow E_{1}$ and $E \rightarrow E_{2}$ then there exits a E_{3} such that $\mathrm{E}_{1} \rightarrow \mathrm{E}_{3}$ and $\mathrm{E}_{2} \rightarrow \mathrm{E}_{3}$.

also known as CR or Confluence
Theorem: The λ-calculus is CR. (Martin-Lof \& Tate)

Interpreters

An interpreter for the λ-calculus is a program to reduce λ-expressions to "answers".

It requires:

- the definition of an answer
- a reduction strategy
- a method to choose redexes in an expression
- a criterion for terminating the reduction process

Definitions of "Answers"

- Normal form (NF): an expression without redexes
- Head normal form (HNF):
x is HNF
($\lambda x . E$) is in HNF if E is in HNF
($x E_{1} \ldots E_{n}$) is in HNF
Semantically most interesting- represents the information content of an expression
- Weak head normal form (WHNF):

An expression in which the left most application is not a redex.
x is in WHNF
($\lambda x . E$) is in WHNF
($x E_{1} \ldots E_{n}$) is in WHNF
Practically most interesting \Rightarrow "Printable Answers"

Reduction Strategies

Two common strategies

- applicative order: left-most innermost redex aka call by value evaluation
- normal order: left-most (outermost) redex aka call by name evaluation

Facts

1. Every λ-expression does not have an answer i.e., a NF or HNF or WHNF

$$
\begin{gathered}
(\lambda \mathrm{x} . \mathrm{xx})(\lambda \mathrm{x} . \mathrm{xx})=\Omega \\
\Omega \rightarrow \Omega \rightarrow \Omega \rightarrow \ldots
\end{gathered}
$$

2. $C R$ implies that if $N F$ exists it is unique
3. Even if an expression has an answer, not all reduction strategies may produce it ($\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{y}$) Ω
leftmost redex: ($\lambda x . \lambda y . y) \Omega \rightarrow \lambda y . y$ innermost redex: ($\lambda x . \lambda y . y) \Omega \rightarrow(\lambda x . \lambda y . y) \Omega \rightarrow \ldots$

Normalizing Strategy

A reduction strategy is said to be normalizing if it terminates and produces an answer of an expression whenever the expression has an answer.
aka the standard reduction
Theorem: Normal order (left-most) reduction strategy is normalizing for the λ-calculus.

A Call-by-name Interpreter

Answers: WHNF
Strategy: leftmost redex

Apply the function before evaluating the arguments
$\mathrm{cn}(\mathrm{E})$: Definition by cases on E

$$
\begin{aligned}
& \mathrm{E}=\mathrm{x}|\lambda \mathrm{x} . \mathrm{E}| \mathrm{E} \mathrm{E} \\
& \mathrm{cn}(\mathrm{x}) \quad=\mathrm{x} \\
& \mathrm{cn}(\lambda x . \mathrm{E})=\lambda x . \mathrm{E} \\
& \mathrm{cn}\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)=\text { let } \mathrm{f}=\mathrm{cn}\left(\mathrm{E}_{1}\right) \\
& \text { in } \\
& \text { case fof } \\
& \lambda x . E_{3}=c n\left(E_{3}\left[E_{2} / x\right]\right) \\
& =\left(\mathrm{fE}_{2}\right)
\end{aligned}
$$

Better syntax ...

[[....]] represents syntax

$$
E=x|\lambda x \cdot E| E E
$$

$$
\operatorname{cn([[x]])}=x
$$

$$
\operatorname{cn}([[\lambda x \cdot E]]) \quad=\lambda x \cdot E
$$

$$
\operatorname{cn}\left(\left[\left[E_{1} E_{2}\right]\right]\right) \quad=\operatorname{let} f=\operatorname{cn}\left(\left[\left[E_{1}\right]\right]\right)
$$

$$
y \text { in }
$$

case f of

$$
\begin{aligned}
{\left[\left[\lambda x . E_{3}\right]\right]=} & \mathrm{cn}(E 3[E 2 / x]) \\
- & \left(f E_{2}\right) \\
& \text { still messy }
\end{aligned}
$$

A Call-by-value Interpreter

Answers: WHNF

Strategy: leftmost-innermost redex but not inside a λ-abstraction
$\mathrm{cv}(\mathrm{E}): \quad$ Definition by cases on E

$\mathrm{cv}(\mathrm{x}) \quad=\mathrm{x}$ function
$\operatorname{cv}(\lambda x . E)=\lambda x . E$
$\operatorname{cv}\left(E_{1} E_{2}\right)=$ let $f=\operatorname{cv}\left(E_{1}\right)$ $a=\operatorname{cv}\left(E_{2}\right)$
in
case f of
$\lambda x . E_{3}=\operatorname{cv}\left(E_{3}[a / x]\right)$

Normalizing?

$$
(\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))
$$

Which interpreters (if any) are normalizing for computing WHNF ?

$$
\begin{array}{ll}
\text { call-by-value } & \text { Clearly not } \\
\text { call-by-name } & \text { May be }
\end{array}
$$

The proof to show that the call-by-name interpreter is normalizing is non-trivial

Big Step Semantics

- Consider the following rule

E_{1}	$\Rightarrow \lambda x \cdot E_{b}$
$E_{1} E_{2}$	$\Rightarrow E_{b}\left[E_{2} / x\right]$

-Can we compute using this rule?
-What does it compute?
-Will it compute every thing that the -calculus can?

