A-calculus:
A Basis for Functional Languages

Arvind
Computer Science and Artificial Intelligence Laboratory
M.L.T.

September 14, 2006

September 14, 2006 http://www.csg.csail.mit.edu/6.827 L03-1
Functions
N
'_L
Domain
f:D>R

f may be viewed as

e a set of ordered pairs <d, r >whered ¢ D
andr e R

= a method of computing value r corresponding
to argument d
some important notations
— A-calculus (Church)
— Turing machines (Turing)
— Partial recursive functions

September 14, 2006 http://www.csg.csail.mit.edu/6.827 L03-2

The A-calculus:
a simple type-free language

* to express all computable functions
» to directly express higher-order functions

e to study evaluation orders, termination,
uniqueness of answers...

e to study various typing systems

» to serve as a kernel language for functional

languages
— However, A-calculus extended with constants and let-
blocks is more suitable

| September 14, 2006 http://www.csa.csail. mit.edu/6.827

L03-3

A-notation

= a way of writing and applying functions
without having to give them names

e a syntax for making a function expression
from any other expression

e the syntax distinguishes between the
integer "2” and the function "always_two"
which when applied to any integer returns 2

always _two x = 2;

September 14, 2006 http://www.csq.csail.mit.edu/6.827

L03-4

Pure A-calculus: Syntax

E=Xx|X.E|EE
7 I N

variable abstraction application

1. application E, E,
7 N
function argument

- application is left associative
EiE,EsEs=(((ELEy) E3) Ey)

2. abstraction AX.E
VRN
bound variable body
or formal parameter
- the scope of the dot in an abstraction extends as
far to the right as possible
AXXY=X.(XY) =(AX.(XY)) = (X.XYy) # (AX.X) Y

| September 14, 2006 http://www.csa.csail. mit.edu/6.827 L03-5

Free and Bound Variables

A-calculus follows lexical scoping rules

e Free variables of an expression

FV() = {3
FV(E, E;) =|FV(E) UFV(E,) | ?

FVOX.E) = ?

= A variable occurrence which is not free in an
expression is said to be a bound variable of the
expression

e combinator: a A-expression without free variables,
aka closed A-expression

September 14, 2006 http://www.csg.csail.mit.edu/6.827 L03-6

R-substitution

(Ax.E) E, — E[E, /X]

replace all free occurrences of x in E with E,

E[A/X] is defined as follows by case on E:

variable
VIE./X]= E, ifx=y
y[E./x]= otherwise
application

(E; E)[E/X] =| (E,[E/X] E[E/X]) |
abstraction

?

(wy.-EDIE/X] =Ay.E, ifx=y

y-EDIESX] =[rz.((EL[2/y])[E/X])

otherwise

where z ¢FV(E,) U FV(E,) U FV(X)

| September 14, 2006 http://www.csa.csail. mit.edu/6.827

L03-7

3-substitution: an example

(p-p (p @) [(@apb) /q]
- (z.z (z 9)) [(apb)/d]

— (Az.z (z (ap b))

September 14, 2006 http://www.csq.csail.mit.edu/6.827

L03-8

A-Calculus as a Reduction System

Syntax
E=x|XE|EE

Reduction Rule
a-rule: AX.E — Ay.E [y/X] ify ¢ FV(E)
p-rule: (AX.E) E, - E [E./X]
n-rule: (AXX.EXx) > E if x ¢ FV(E)

Redex
(Ax.E) E,

Normal Form
An expression without redexes

| September 14, 2006 http://www.csa.csail. mit.edu/6.827 L03-9

a and n Rules

a -rule says that the bound variables can be
renamed systematically:

(Ax.x (x.a x)) b = (Ay.y (Ax.a x)) b

n-rule can turn any expression, including a
constant, into a function:

AX.a X —>, a

n -rule does not work in the presence of types

| September 14, 2006 http://www.csq.csail.mit.edu/6.827 L03-10

A Sample Reduction

C
H
T

AXAY.AFT Xy
AT OAX.Ay. X)
AT (AX.AY. Y)

What is H (C a b) ?

(AMf.f Ox.Ay.x)) (C a b)
(Cab) (Ax.Ay.x)
(x.ay.x) ab

(Ay.a) b

a

il

H(Cab) —» a
T(Cab) —» b

| September 14, 2006 http://www.csa.csail. mit.edu/6.827 L03-11

Integers: Church's Representation

0= AX.AY. Y
1= AX.AY. XYy
2=)MXAY. X (XY)

-n“z AXAY. X (X...(X y)...)

succ ?
If n is an integer, then (n a b) gives n
nested a’s followed by b

= the successor of n should be a (n a b)

succ = \n.Aa.Ab.a (na b)
plus = AmM.ANn.m succ n ?
mul = im.An.m (plus n) O ?

| September 14, 2006 http://www.csq.csail.mit.edu/6.827 L03-12

Booleans and Conditionals

True = AX.AY.X

False = AX.AY.Y

zero? = An. n (Ly.False) True

zero? O —» (Ax.Ay.y) (Ly.False) True ?
— (Ay. y) True
— True

zero? 1 —-» (Ax.Ay.xy) (ry.False) True ?
— (Ly.False) True
— False

cond = Ab.AX.Ay. b X y

cond True E;E, = E, ?

cond False E,E, —» E; ?

| September 14, 2006 nttp://www.csa.csail.mit.edu/6.827 L03-13

Recursion ?

fact n = if (n == 0) then 1
else n * fact (n-1)

= Assuming suitable combinators, fact can
be rewritten as:

fact = An. cond (zero? n) 1 (mul n (fact (sub n 1)))

e How do we get rid of the fact on the RHS?
Suppose

H = Af.An.cond (zero? n) 1 (mul n (f (sub n 1)))
then fact = H fact

--- fact is a solution of this equation???

more on recursion in the next lecture

September 14, 2006 http://www.csq.csail.mit.edu/6.827

L03-14

Choosing Redexes

1. ((OX.M) A) ((Ox.N) B)

Does p, followed by p, produce the same
expression as p, followed by p,?

Notice in the second example p, can destroy
or duplicate p, .

| September 14, 2006 http://www.csa.csail. mit.edu/6.827 L03-15

Church-Rosser Property

A reduction system is said to have the
Church-Rosser property, if E =-» E; and
E — E, then there exits a E; such that
E, » Ej;and E, » E;.

also known as CR or Confluence

Theorem: The A-calculus is CR.
(Martin-Lof & Tate)

| September 14, 2006 http://www.csq.csail.mit.edu/6.827 L03-16

Interpreters

An interpreter for the A-calculus is a program to
reduce A-expressions to “answers”.

It requires:
e the definition of an answer

e a reduction strategy
- a method to choose redexes in an expression

= a criterion for terminating the reduction
process

| September 14, 2006 http://www.csa.csail. mit.edu/6.827 L03-17

Definitions of “Answers”

 Normal form (NF): an expression without redexes

e Head normal form (HNF):
X is HNF
(Ax.E) is in HNF if E is in HNF
(X E, ... E)) is in HNF
Semantically most interesting- represents the
information content of an expression

e Weak head normal form (WHNF):
An expression in which the left most application is not a
redex.
X is in WHNF
(Ax.E) is in WHNF
(X E; ... E,) is in WHNF
Practically most interesting =“Printable Answers”

| September 14, 2006 http://www.csq.csail.mit.edu/6.827 L03-18

Reduction Strategies

Two common strategies

= applicative order: left-most innermost redex
aka call by value evaluation

e normal order: left-most (outermost) redex

aka call by name evaluation

(AX.y) ((Ax.x X) (AX.X X))
P2

«— applicative order
<— normal order

P1

| September 14, 2006

http://www.csa.csail. mit.edu/6.827 L03-19

Facts

1. Every A-expression does not have an answer
i.e., a NF or HNF or WHNF

(XX X) (MXxxx) = Q
Q> Q>0 ...

2. CR implies that if NF exists it is unique

3. Even if an expression has an answer, not all
reduction strategies may produce it
(Xx.ay.y) Q

leftmost redex: (AX.Ay.y) Q—>Ay.y
innermost redex: (AX.Ay.y) Q— (x.Ay.y) Q— ...

September 14, 2006

http://www.csq.csail.mit.edu/6.827 L03-20

Normalizing Strategy

if it terminates and produces an

answer.

| September 14, 2006 http://www.csa.csail. mit.edu/6.827

A reduction strategy is said to be normalizing

answer of an

expression whenever the expression has an

aka the standard reduction

Theorem: Normal order (left-most) reduction
strategy is normalizing for the A-calculus.

L03-21

A Call-by-name Interpreter

Answers: WHNF
Strategy: leftmost redex

Apply the function
before evaluating
the arguments

cn(E): Definition by cases on E
E = x |X*E |EE
cn(x) = X
cn(Ax.E) = Ax.E
cn(EL Ex) =llet = cn(E,)
in
case f of
AX.E3 = cn(Eg[E/X])
_ =({E)
| September 14, 2006 http://www.csq.csail.mit.edu/6.827 L03-22

11

Better syntax ...

[[----]] represents syntax

E = X |XE |EE
cn(LIx1D) = X
cn([[*x-E]1D = Mx.E
cn([[E; E,]) = let f=cn([[E,]])
in
case f of
[[Ax.E3]] = cn(E3[E2/x])
_ =({E)

Meta syntax

still messy

| September 14, 2006 http://www.csa.csail. mit.edu/6.827 L03-23

A Call-by-value Interpreter

Answers: WHNF
Strategy: leftmost-innermost redex but not
inside a A-abstraction

cv(E): Definition by cases on E
Evaluate the
E = X |AX.E | E E|argument before
applying the
cv(x) = X function
cv(Ax.E) = AX.E
cv(E; E;) = |let f=cv(E,)
a = cv(E,)
in
case f of
AX.E; = cv(Es[a/x])
_ =({a
| September 14, 2006 http:/7Www.csq.csail.mit.edu/6. L03-24

12

Normalizing?

(AX.y) ((Ax.x X) (AX.X X))

call by value call by name
reduction reduction

(AX.y) ((AX.x X) (AX.X X)) y

Which interpreters (if any) are normalizing
for computing WHNF ?
call-by-value Clearly not
call-by-name May be

The proof to show that the call-by-name
interpreter is normalizing is non-trivial

| September 14, 2006 http://www.csa.csail. mit.edu/6.827 L03-25

Big Step Semantics

= Consider the following rule

E, = MXE,

E1E; = E,[E/x]

<Can we compute using this rule?
<What does it compute?

<Will it compute every thing that the —calculus can?

| September 14, 2006 http://www.csq.csail.mit.edu/6.827 L03-26

13

