A J\-calculus with Constants and
Let-blocks

Arvind
Computer Science and Artificial Intelligence Laboratory
M.L.T.

September 19, 2006

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-1

Outline

e Recursion and Y combinator <

e The), Calculus

September 19. 2006 http://www.csqg.csail.mit.edu/6.827 L04-2

Recursion

fact n = 1f (n == 0) then 1
else n * fact (n-1)

e fact can be rewritten as:
fact = An. Cond (Zero? n) 1 (Mul n (fact (Sub n 1)))
e How to get rid of the fact on the RHS?

Idea: pass fact as an argument to itself

H = Af.An.Cond (Zero? n) 1 (Mul n (f f (Sub n 1)))
fact=H H

Self application!

| September 19, 2006 http://www.csa.csail. mit.edu/6.827 L04-3

Self-application and Paradoxes

Self application, i.e., (x X) is dangerous.

Suppose:

u= Ay.Iif(yy) =athenbelse a
What is (u u) ?

(uu) > if (uu) =athen b else a

Contradiction!!!

Any semantics of A-calculus has to make sure that
functions such as u have the meaning 1, i.e.
“totally undefined” or “no information”.

Self application also violates every type discipline.

September 19, 2006

http://www.csqg.csail.mit.edu/6.827 L04-4

Recursion and Fixed Point Equations

Recursive functions can be thought of as
solutions of fixed point equations:

fact = An. Cond (Zero? n) 1 (Mul n (fact (Sub n 1)))

Suppose

H = Af.An.Cond (Zero? n) 1 (Mul n (f (Sub n 1)))
then

fact = H fact

fact is a fixed point of function H!

| September 19, 2006 http://www.csa.csail.mit.edu/6.827 L04-5

Fixed Point Equations

f: D>D
A fixed point equation has the form

f(x) = x
Its solutions are called the fixed points of f
because if x, is a solution then

x, = f(x,) = f(f(x,)) = FF(F(x,))) = ...

Examples: f: Int — Int Solutions
f(x) =x2-2 XxX=2,x=-1
f(xX) =x2+x+1 no solutions
f(x) = x infinite number

of solutions

September 19, 2006 http://www.csq.csail.mit.edu/6.827

Least Fixed Point

Consider
fn=if n=0 then 1
else (if n=1 then f 3 else f (n-2))
H = Af.An.Cond(n=0, 1, Cond(n=1, f 3, f (n-2))

Is there an fp such that fp =H fp ? %
fin = if n is even
= otherwise
2n =1 if n is even
=5 otherwise

f1 contains no arbitrary information and is called
the least fixed point. Unique solution!

| September 19, 2006 http://www.csa.csail. mit.edu/6.827

L04-7

Y : A Fixed Point Operator

Y = M., (f (X X)) OX.(f (X X)))

Notice
Y F — AX.F (X X)) (AX.F (X X))
—> F OX.F (X X)) Ox.F (X X))
F(YF) —F (Ox.F X)) (A.F (x X))
F(YF)=YF (Y F) is a fixed point of F

Y computes the least fixed point of any function !

There are many different fixed point operators.

L04-8

September 19, 2006 http://www.csq.csail.mit.edu/6.827

Mutual Recursion

odd n = 1f n==0 then False else even (n-1)
even n = if n==0 then True else odd (n-1)
odd = H, even
even = H, odd
where

H, = Af.An.Cond(n=0, False, f(n-1))
H, = Af.An.Cond(n=0, True, f(n-1))

substituting “H, odd” for even Can we expressing

odd = H, (H, odd) odd using Y ?
=Hodd where H= Af. H; (H, f)
= odd =YH
| September 19, 2006 nttp://www.csg.csail.mit.edu/6.827 L04-9

A-calculus with Combinator Y

Recursive programs can be translated into the
A-calculus with constants and Y combinator.
However,

= Y combinator violates every type discipline

= translation is messy in case of mutually
recursive functions
=
extend the A-calculus with recursive let
blocks.

| September 19, 2006 http://www.csq.csail.mit.edu/6.827 L04-10

Outline

e Recursion and Y combinator v

e The A Calculus <

| September 19, 2006 http://www.csa.csail. mit.edu/6.827 L04-11

A-calculus with Constants & Letrec

E::= x| XE | EE
| Cond (E, E, E)
| PF.(E;s-.-,EY)
| CN,
| CNG(Ey, B | CNG(SE, L SED |
|letSinE S
initial
PF, ::=negate | not | ... | Prj,| Prj, | ... terms
PF, ::=+ | ...
CNg ::= Number | Boolean
CN, ::=cons | ...
Statements

S::=¢|x=E | S;S

Variables on the LHS in a let expression must be
pairwise distinct

| September 19, 2006 http://www.csqg.csail.mit.edu/6.827 L04-12

Let-block Statements

“ : “Js associative and commutative

S1: S, =S5,:5;
S1:(Sz2 ;5 S3) =(51:52):Ss
€;S =S
letein E =E
| September 19. 2006 http://www.csa.csail.mit.edu/6.827 L04-13

Free Variables of an Expression

FV(x) = {x}
FV(E, E,) = FV(E,) U FV(E,)
FV(Ax.E) = FV(E) - {x}

FV(let S in E) = FVS(S) U FV(E) — BVS(S)

FVS(e) ={>
FVS(x = E; S)= FV(E) U FVS(S)

BVS(e) ={}
BVS(x = E; S)= {x} U BVS(S)

September 19, 2006 http://www.csq.csail.mit.edu/6.827

L04-14

(o) —Renaming (to avoid free variable capture)

Assuming t is a new variable, rename x to t :
AX.e = At.(e[t/x])
letx =e; Sineg,
= let t = e[t/X] ; S[t/X] in ey[t/X]
where [t/x] is defined as follows:

X[t/x] =t
y[t/x] =y ifx=y
(E, E)IUX] = (E,[t/x] E,[t/x])
OX.E)[t/X] = A\X.E
(Ovy.BE)[t/X] = AY.E[t/X] ifx=y
(let S in E)[t/Xx] ?
= (let Sin E) if x ¢ FV(let Sin E)

(let S[t/x] in E[t/x]) if x e FV(let S in E)

(S1; SHI/x] = (S.[UX]; S[UXD)

(y=BItUx] =y =E[UX])
e[t/x] = g
| September 19, 2006 http://www.csa.csail.mit.edu/6.827 L04-15

Primitive Functions and

Datastructures
&~rules
+(n, m) — n+m
Cond-rules
Cond(True, e,, e,) - e
Cond(False, e, e,) - €,
Data-structures
CN.(eq,.--,ey) -
lett; =e;; ... ; t, =¢e
in
CNy(ty,.... 1)

Prj,(CN,(ay,.--,a.)) - a

| September 19, 2006 http://www.csqg.csail.mit.edu/6.827 L04-16

The B-rule

The normal B-rule
(Ax.e) e, — e [e,/X]
is replaced the following B-rule

(Ax.e) e,—> let t = e, in e[t/X]
where t is a new variable

and the Instantiation rules which are used to
refer to the value of a variable

| September 19, 2006 http://www.csa.csail. mit.edu/6.827 L04-17

Values and Simple Expressions

Values
V := MX.E| CNgy | CN,(SE,,...,SE)

Simple expressions
SE::= x|V

| September 19, 2006 http://www.csq.csail.mit.edu/6.827 L04-18

Contexts for Expressions

A context is an expression (or statement) with a
“hole” such that if an expression is plugged in
the hole the context becomes a legitimate

expression:
Cl::= 10
| 2x.C[]
ICIE | EC[]
| let Sin C[]
| let SC[] in E

Statement Context for an expression

SC[] ::= x=C[]
I sCl; S| S;scl

| September 19, 2006 http://www.csa.csail. mit.edu/6.827 L04-19

| September 19, 2006 http://www.csq.csail.mit.edu/6.827 L04-20

Mot INStantiation Rules

A free variable in an expression can be instantiated
by a simple expression

Instantiation rule 1
(letx=a;SinC[x]) > (letx=a; S in‘ Clal)
/

‘ simple expression ‘ free occurrence renamed C[] to
of X in some avoid free-
context C variable capture

Instantiation rule 2
(x=a; SC[x]) > (x=a; SC[a])

Instantiation rule 3
X =a - x =C[C[x]]
where a = C[X]

10

Lifting Rules: Motivation

let
f=letS; inAx.e;
y="fa

in
((let S, in Ax.e,) e3)

How do we juxtapose
(Ax.e;) a

or
(Ax.e,) eg ?

| September 19, 2006 http://www.csa.csail. mit.edu/6.827 L04-21

Lifting Rules

(let S’ in €’) is the a-renamed (let S in e) to
avoid name conflicts in the following rules:

X=letSine - x=e; 5
letS;in(letSine) —» letS;; S'ine’
(letSine)e; —> letS in e e;

Cond((let Sin e), e, e,)
— let S’ in Cond(e’, e,, €,)

PF.(e,,...(let S'in e),...e,)
— let S’ in PF (eq,...€’,...e)

| September 19, 2006 http://www.csqg.csail.mit.edu/6.827 L04-22

11

Confluenence and Letrecs

odd = An.Cond(n=0, False, even (n-1)) (M)
even = Ain.Cond(n=0, True, odd (n-1))

substitute for even (n-1) in M
odd = An.Cond(n=0, False,

Cond(n-1 = 0, True, odd ((n-1)-1))) M)
even = in.Cond(n=0, True, odd (n-1))

substitute for odd (n-1) in M
odd = An.Cond(n=0, False, even (n-1)) M)
even = An.Cond(n=0, True,

Cond(n-1 = 0, False, even ((n-1)-1)))

Can odd in M; and M, be reduced to the same expression ?

Proposition: %, is not confluent.
Ariola & Klop 1994

| September 19, 2006 http://www.csa.csail. mit.edu/6.827 L04-23

A versus A, Calculus

Terms of the A, calculus can be translated into
terms of the A calculus by systematically
eliminating the let blocks. Let T be such a
translation.

Suppose e —» e; in A then does there exist a
reduction such that T[[e]] —» T[[e,]l in A ?

We need a notion of observable values to
compare terms in a meaningful way.

| September 19, 2006 http://www.csq.csail.mit.edu/6.827 L04-24

12

Instantaneous Information

“Instantaneous information” (info) of a term is
defined as a (finite) trees

To 22= L1 M CNg | CN(Tpy,-.-,Tpy)
Info: E—> T,
Info[{S in E}] Info [E]
Info[AX.E] A
INfo[CNg] CN,

Info[CN,(a,,-.-,&,)

=11

CNy(Info[a,],...,Info[a,])

Info[E] 1 otherwise
Notice this procedure always terminates
| September 19, 2006 http://www.csa.csail.mit.edu/6.827 L04-25

Reduction and Info

Terms can be compared by their Info value

1 < t (bottom)
t < t (reflexive)
CN(Vq,--asVihees V) < CNp(Vy, -5V, V)

if v, £V

Proposition Reduction is monotonic wrt Info:
If e —» e, then Info[e] < Info[e,].

Proposition Confluence wrt Info:
Ife >» e, and e »e, then
J e; s.t. e;» egand Info[e,] < Info[e,].

L04-26

September 19, 2006 http://www.csq.csail.mit.edu/6.827

13

