
1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L04-1September 19, 2006 http://www.csg.csail.mit.edu/6.827

A λ-calculus with Constants and
Let-blocks

September 19, 2006

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-2

Outline

• Recursion and Y combinator ⇐

• The λlet Calculus

2

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-3

Recursion

• fact can be rewritten as:

fact = λn. Cond (Zero? n) 1 (Mul n (fact (Sub n 1)))

• How to get rid of the fact on the RHS?

fact n = if (n == 0) then 1
else n * fact (n-1)

Idea: pass fact as an argument to itself

Self application!

H = λf.λn.Cond (Zero? n) 1 (Mul n (f f (Sub n 1)))

fact = H H

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-4

Self-application and Paradoxes
Self application, i.e., (x x) is dangerous.

Suppose:
u ≡ λy. if (y y) = a then b else a

What is (u u) ?
(u u) → if (u u) = a then b else a

Contradiction!!!

Any semantics of λ-calculus has to make sure that
functions such as u have the meaning ⊥, i.e.
“totally undefined” or “no information”.

Self application also violates every type discipline.

3

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-5

Recursion and Fixed Point Equations

Recursive functions can be thought of as
solutions of fixed point equations:

fact = λn. Cond (Zero? n) 1 (Mul n (fact (Sub n 1)))

Suppose

H = λf.λn.Cond (Zero? n) 1 (Mul n (f (Sub n 1)))

then

fact = H fact

fact is a fixed point of function H!

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-6

Fixed Point Equations

f : D → D
A fixed point equation has the form

f(x) = x

Examples: f: Int → Int Solutions
f(x) = x2 – 2

f(x) = x2 + x + 1

f(x) = x

x = 2, x = -1

no solutions

infinite number
of solutions

Its solutions are called the fixed points of f
because if xp is a solution then

xp = f(xp) = f(f(xp)) = f(f(f(xp))) = ...

4

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-7

Least Fixed Point
Consider

f n = if n=0 then 1
else (if n=1 then f 3 else f (n-2))

H = λf.λn.Cond(n=0 , 1, Cond(n=1, f 3, f (n-2))
Is there an fp such that fp = H fp ?

f1 n = 1 if n is even
= ⊥ otherwise

f1 contains no arbitrary information and is called
the least fixed point. Unique solution!

f2 n = 1 if n is even
= 5 otherwise

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-8

Y : A Fixed Point Operator

Notice
Y F → λx.F (x x)) (λx.F (x x))

→

F (Y F) →

Y ≡ λf.(λx. (f (x x))) (λx.(f (x x)))

F (λx.F (x x)) (λx.F (x x))

F (λx.F (x x)) (λx.F (x x))

F (Y F) = Y F (Y F) is a fixed point of F

Y computes the least fixed point of any function !

There are many different fixed point operators.

5

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-9

Mutual Recursion

odd = H1 even
even = H2 odd

where
H1 = λf.λn.Cond(n=0, False, f(n-1))
H2 = λf.λn.Cond(n=0, True, f(n-1))

odd n = if n==0 then False else even (n-1)
even n = if n==0 then True else odd (n-1)

substituting “H2 odd” for even
odd = H1 (H2 odd)

= H odd where H =
⇒ odd = Y H

λf. H1 (H2 f)

Can we expressing
odd using Y ?

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-10

λ-calculus with Combinator Y

Recursive programs can be translated into the
λ-calculus with constants and Y combinator.
However,

• Y combinator violates every type discipline

• translation is messy in case of mutually
recursive functions

⇒
extend the λ-calculus with recursive let
blocks.

6

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-11

Outline

• Recursion and Y combinator √

• The λlet Calculus ⇐

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-12

λ-calculus with Constants & Letrec
E ::= x | λx.E | E E

| Cond (E, E, E)
| PFk(E1,...,Ek)
| CN0
| CNk(E1,...,Ek) | CNk(SE1,...,SEk)
| let S in E

PF1 ::= negate | not | ... | Prj1| Prj2 | ...
PF2 ::= + | ...
CN0 ::= Number | Boolean
CN2 ::= cons | ...

Statements
S ::= ε | x = E | S; S

Variables on the LHS in a let expression must be
pairwise distinct

not in
initial
terms

7

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-13

Let-block Statements

“ ; “ is associative and commutative

S1 ; S2 ≡ S2 ; S1
S1 ; (S2 ; S3) ≡ (S1 ; S2) ; S3

ε ; S ≡ S
let ε in E ≡ E

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-14

Free Variables of an Expression

FV(x) = {x}
FV(E1 E2) = FV(E1) U FV(E2)
FV(λx.E) = FV(E) - {x}
FV(let S in E) = FVS(S) U FV(E) – BVS(S)

FVS(ε) = {}

BVS(ε) = {}
BVS(x = E; S)=

FVS(x = E; S)= FV(E) U FVS(S)

{x} U BVS(S)

8

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-15

α -Renaming (to avoid free variable capture)

Assuming t is a new variable, rename x to t :
λx.e ≡ λt.(e[t/x])
let x = e ; S in e0

≡ let t = e[t/x] ; S[t/x] in e0[t/x]
where [t/x] is defined as follows:

x[t/x] = t
y[t/x] = y if x ≠ y
(E1 E2)[t/x] = (E1[t/x] E2[t/x])
(λx.E)[t/x] = λx.E
(λy.E)[t/x] = λy.E[t/x] if x ≠ y
(let S in E)[t/x] ?

= (let S in E) if x ∉ FV(let S in E)
= (let S[t/x] in E[t/x]) if x ∈ FV(let S in E)

(S1; S2)[t/x] =
(y = E)[t/x] =
ε[t/x] = ε

(S1[t/x]; S2[t/x])
(y = E[t/x])

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-16

Primitive Functions and
Datastructures

δ-rules
+(n, m) → n+m

...

Cond-rules
Cond(True, e1, e2) → e1
Cond(False, e1, e2) → e2

Data-structures
CNk(e1,...,ek) →

Prji(CNk(a1,...,ak)) →

let t1 = e1; ... ; tk = ek
in

CNk(t1,...,tk)
ai

9

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-17

The β-rule

The normal β-rule

(λx.e) ea → e [ea/x]

is replaced the following β-rule

(λx.e) ea → let t = ea in e[t/x]
where t is a new variable

and the Instantiation rules which are used to
refer to the value of a variable

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-18

Values and Simple Expressions

Values
V ::= λx.E | CN0 | CNk(SE1,...,SEk)

Simple expressions
SE ::= x | V

10

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-19

Contexts for Expressions
A context is an expression (or statement) with a
“hole” such that if an expression is plugged in
the hole the context becomes a legitimate
expression:

C[] ::= []
| λx.C[]
| C[] E | E C[]
| let S in C[]
| let SC[] in E

Statement Context for an expression

SC[] ::= x = C[]
| SC[] ; S | S; SC[]

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-20

λlet Instantiation Rules

A free variable in an expression can be instantiated
by a simple expression

Instantiation rule 2
(x = a ; SC[x]) →

simple expression free occurrence
of x in some
context C

renamed C[] to
avoid free-
variable capture

Instantiation rule 1
(let x = a ; S in C[x]) → (let x = a ; S in C’[a])

Instantiation rule 3
x = a →
where a = C[x]

(x = a ; SC’[a])

x = C’[C[x]]

11

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-21

Lifting Rules: Motivation

let
f = let S1 in λx.e1
y = f a

in
((let S2 in λx.e2) e3)

How do we juxtapose

(λx.e1) a
or

(λx.e2) e3 ?

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-22

Lifting Rules
(let S’ in e’) is the α-renamed (let S in e) to
avoid name conflicts in the following rules:

x = let S in e →

let S1 in (let S in e) →

(let S in e) e1 →

Cond((let S in e), e1, e2)
→

PFk(e1,...(let S in e),...ek)
→

x = e’; S’

let S1; S’ in e’

let S’ in e’ e1

let S’ in Cond(e’, e1, e2)

let S’ in PFk(e1,...e’,...ek)

12

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-23

Confluenence and Letrecs

odd = λn.Cond(n=0, False, even (n-1)) (M)
even = λn.Cond(n=0, True, odd (n-1))

substitute for even (n-1) in M
odd = λn.Cond(n=0, False,

Cond(n-1 = 0 , True, odd ((n-1)-1))) (M1)
even = λn.Cond(n=0, True, odd (n-1))

substitute for odd (n-1) in M
odd = λn.Cond(n=0, False, even (n-1)) (M2)
even = λn.Cond(n=0, True,

Cond(n-1 = 0 , False, even ((n-1)-1)))

Can odd in M1 and M2 be reduced to the same expression ?

Proposition: λlet is not confluent.
Ariola & Klop 1994

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-24

λ versus λlet Calculus
Terms of the λlet calculus can be translated into
terms of the λ calculus by systematically
eliminating the let blocks. Let T be such a
translation.

Suppose e e1 in λlet then does there exist a
reduction such that T[[e]] T[[e1]] in λ ?

→→
→→

We need a notion of observable values to
compare terms in a meaningful way.

13

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-25

Instantaneous Information

“Instantaneous information” (info) of a term is
defined as a (finite) trees

TP ::= ⊥ | λ| CN0 | CNk(TP1,...,TPk)

Info: E → TP

Info[{S in E}] = Info [E]
Info[λx.E] = λ
Info[CN0] = CN0
Info[CNk(a1,...,ak)]

= CNk(Info[a1],...,Info[ak])
Info[E] = ⊥ otherwise

Notice this procedure always terminates

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-26

Reduction and Info

⊥ ≤ t (bottom)
t ≤ t (reflexive)
CNk(v1,...,vi,...,vk) ≤ CNk(v1,...,v’i,...,vk)

if vi ≤  v’i

Terms can be compared by their Info value

Proposition Reduction is monotonic wrt Info:
If e e1 then Info[e] ≤ Info[e1].→→

→→
→→→→

Proposition Confluence wrt Info:
If e e1 and e e2 then
∃ e3 s.t. e1 e3 and Info[e2] ≤ Info[e3].

