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Outline

• Recursion and Y combinator ⇐

• The λlet Calculus 



2

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-3

Recursion

• fact can be rewritten as: 

fact = λn. Cond (Zero? n)  1  (Mul n (fact (Sub n 1)))

• How to get rid of the fact on the RHS? 

fact n = if (n == 0) then 1
else n * fact (n-1)

Idea: pass fact as an argument to itself

Self application!

H    = λf.λn.Cond (Zero? n) 1 (Mul n (f f (Sub n 1)))

fact = H  H
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Self-application and Paradoxes
Self application, i.e., (x x) is dangerous.  

Suppose:
u ≡ λy. if (y y) = a then b else a

What is (u u) ?
(u u) → if (u u) = a then b else a

Contradiction!!!

Any semantics of λ-calculus has to make sure that 
functions such as u have the meaning ⊥, i.e. 
“totally undefined” or “no information”.

Self application also violates every type discipline.



3

September 19, 2006 http://www.csg.csail.mit.edu/6.827 L04-5

Recursion and Fixed Point Equations

Recursive functions can be thought of as 
solutions of fixed point equations:

fact = λn. Cond (Zero? n)  1  (Mul n (fact (Sub n 1)))

Suppose

H    = λf.λn.Cond (Zero? n) 1 (Mul n (f (Sub n 1)))

then

fact = H  fact

fact is a fixed point of function H!
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Fixed Point Equations

f :  D → D
A fixed point equation has the form 

f(x) = x

Examples:  f: Int → Int Solutions
f(x) = x2 – 2

f(x) = x2 + x + 1

f(x) = x

x = 2, x = -1

no solutions

infinite number 
of  solutions

Its solutions are called the fixed points of f 
because if xp is a solution then

xp = f(xp) = f(f(xp)) = f(f(f(xp))) = ...
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Least Fixed Point
Consider

f n = if n=0 then 1
else (if n=1 then f 3 else f (n-2))

H = λf.λn.Cond(n=0 , 1, Cond(n=1, f 3, f (n-2))
Is there an fp such that fp = H fp ?

f1 n = 1 if n is even
= ⊥ otherwise

f1 contains no arbitrary information and is called 
the least fixed point.  Unique solution!

f2 n = 1 if n is even
= 5 otherwise
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Y : A Fixed Point Operator

Notice
Y F → λx.F (x x)) (λx.F (x x))

→

F (Y F) →

Y  ≡ λf.(λx. (f (x x))) (λx.(f (x x)))

F (λx.F (x x)) (λx.F (x x))

F (λx.F (x x)) (λx.F (x x))

F (Y F) = Y F  (Y F) is a fixed point of F

Y computes the least fixed point of any function !

There are many different fixed point operators.
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Mutual Recursion

odd = H1 even
even = H2 odd

where
H1 = λf.λn.Cond(n=0, False, f(n-1))
H2 = λf.λn.Cond(n=0, True,  f(n-1))

odd  n = if n==0 then False else even (n-1)
even n = if n==0 then True  else odd  (n-1)

substituting “H2 odd” for even
odd = H1 (H2 odd) 

= H odd where H =
⇒ odd = Y H

λf. H1 (H2 f)

Can we expressing 
odd using Y ?
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λ-calculus with Combinator Y 

Recursive programs can be translated into the 
λ-calculus with constants and Y combinator. 
However, 

• Y combinator violates every type discipline

• translation is messy in case of mutually 
recursive functions

⇒
extend the λ-calculus with recursive let 
blocks.
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Outline

• Recursion and Y combinator √

• The λlet Calculus ⇐
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λ-calculus with Constants  & Letrec
E ::=  x  |  λx.E  |  E E  

| Cond (E, E, E) 
| PFk(E1,...,Ek) 
| CN0
| CNk(E1,...,Ek) | CNk(SE1,...,SEk)
| let S in E  

PF1 ::= negate | not | ... | Prj1| Prj2 | ... 
PF2 ::= + | ... 
CN0 ::= Number | Boolean
CN2 ::= cons | ...

Statements
S ::=  ε | x = E  |  S; S

Variables on the LHS in a let expression must be 
pairwise distinct

not in
initial
terms
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Let-block Statements

“ ; “ is associative and commutative

S1 ; S2 ≡ S2 ; S1
S1 ; (S2 ; S3) ≡ (S1 ; S2 ) ; S3

ε ; S ≡ S
let ε in E ≡ E 
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Free Variables of an Expression

FV(x) = {x}
FV(E1 E2) = FV(E1) U FV(E2) 
FV(λx.E) = FV(E) - {x}
FV(let S in E) = FVS(S) U FV(E) – BVS(S)

FVS(ε) = {}

BVS(ε) = {}
BVS(x = E; S)= 

FVS(x = E; S)=  FV(E) U FVS(S) 

{x} U BVS(S)
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α -Renaming (to avoid free variable capture)

Assuming t is a new variable, rename x to t :
λx.e  ≡  λt.(e[t/x])
let x = e ; S in e0

≡ let t = e[t/x] ; S[t/x] in e0[t/x]
where [t/x] is defined as follows:

x[t/x] = t
y[t/x] = y if x ≠ y 
(E1 E2 )[t/x] = (E1[t/x]  E2[t/x])
(λx.E)[t/x] = λx.E
(λy.E)[t/x] = λy.E[t/x] if x ≠ y
(let S in E)[t/x]                                                  ?

= (let S in E)    if x ∉ FV(let S in E) 
= (let S[t/x] in E[t/x])  if x ∈ FV(let S in E)

(S1; S2)[t/x] =
(y = E)[t/x] = 
ε[t/x] = ε

(S1[t/x]; S2[t/x])
(y = E[t/x])           
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Primitive Functions and 
Datastructures

δ-rules
+( n, m) → n+m

...

Cond-rules
Cond(True,  e1, e2 ) → e1
Cond(False, e1, e2 ) → e2

Data-structures
CNk(e1,...,ek ) →

Prji(CNk(a1,...,ak )) →

let t1 = e1; ... ; tk = ek
in

CNk(t1,...,tk )
ai
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The β-rule

The normal β-rule

(λx.e) ea → e [ea/x]

is replaced the following β-rule

(λx.e) ea → let t = ea in e[t/x]
where t is a new variable

and the Instantiation rules which are used to 
refer to the value of a variable
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Values and Simple Expressions

Values
V   ::=  λx.E | CN0 | CNk(SE1,...,SEk)

Simple expressions
SE ::=  x | V
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Contexts for Expressions
A context is an expression (or statement) with a 
“hole” such that if an expression is plugged in 
the hole the context becomes a legitimate 
expression:

C[] ::=  [] 
| λx.C[]  
| C[] E  |  E C[]  
| let S in C[]  
| let SC[] in E  

Statement Context for an expression

SC[] ::=  x = C[] 
| SC[] ; S |  S; SC[]
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λlet Instantiation Rules

A free variable in an expression can be instantiated 
by a simple expression

Instantiation rule 2
(x = a ; SC[x]) →

simple expression free occurrence 
of x in some 
context C

renamed C[ ] to 
avoid free-
variable capture

Instantiation rule 1
(let x = a ; S in C[x]) → (let x = a ; S in C’[a])

Instantiation rule 3
x = a →
where a = C[x]

(x = a ; SC’[a])

x = C’[C[x]]    
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Lifting Rules: Motivation

let
f = let S1 in λx.e1
y = f a

in
((let S2 in λx.e2) e3) 

How do we juxtapose 

(λx.e1)  a
or

(λx.e2) e3 ?
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Lifting Rules
(let S’ in e’) is the α-renamed (let S in e) to 
avoid name conflicts in the following rules:

x = let S in e →

let S1 in (let S in e) →

(let S in e) e1 →

Cond((let S in e), e1, e2)
→

PFk(e1,...(let S in e),...ek)
→

x = e’; S’

let S1; S’ in e’

let S’ in e’ e1

let S’ in Cond(e’, e1, e2)

let S’ in PFk(e1,...e’,...ek)
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Confluenence and Letrecs

odd = λn.Cond(n=0,  False, even (n-1)) (M)
even = λn.Cond(n=0,   True,  odd (n-1))

substitute for even (n-1) in M
odd = λn.Cond(n=0,  False, 

Cond(n-1 = 0 , True, odd ((n-1)-1))) (M1)
even = λn.Cond(n=0,   True,  odd (n-1))

substitute for odd (n-1) in M
odd = λn.Cond(n=0,  False, even (n-1)) (M2)
even = λn.Cond(n=0,   True,

Cond( n-1 = 0 , False, even ((n-1)-1)))

Can odd in M1 and M2 be reduced to the same expression ?

Proposition: λlet is not confluent.  
Ariola & Klop 1994
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λ versus λlet Calculus
Terms of the λlet calculus can be translated into 
terms of the λ calculus by systematically 
eliminating the let blocks. Let T be such a 
translation.

Suppose  e       e1 in λlet then does there exist a 
reduction such that  T[[e]]       T[[e1]] in λ ?

→→
→→

We need a notion of observable values to 
compare terms in a meaningful way.
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Instantaneous Information

“Instantaneous information” (info) of a term is 
defined as a (finite) trees

TP ::=  ⊥ | λ| CN0 | CNk(TP1,...,TPk)

Info: E → TP

Info[{S in E}] =  Info [E]
Info[λx.E] =  λ
Info[CN0] =  CN0
Info[CNk(a1,...,ak)]

=  CNk(Info[a1],...,Info[ak])
Info[E] =  ⊥ otherwise

Notice this procedure always terminates
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Reduction and Info

⊥ ≤ t (bottom)
t ≤ t (reflexive)
CNk(v1,...,vi,...,vk)  ≤  CNk(v1,...,v’i,...,vk)      

if   vi  ≤  v’i

Terms can be compared by their Info value

Proposition Reduction is monotonic wrt Info:
If  e      e1 then Info[e] ≤ Info[e1].→→

→→
→→→→

Proposition   Confluence wrt Info:
If e     e1 and e     e2 then
∃ e3 s.t. e1 e3 and  Info[e2] ≤ Info[e3].


