Some more thoughts on $\lambda_{\text {let }}$

Arvind
Computer Science and Artificial Intelligence Laboratory M.I.T.

September 21, 2006

Why $\lambda_{\text {let }}$ Calculus ?

Programming without (recursive) let blocks is tedious

Recursive let blocks can be translated into the λ-calculus with constants and Y combinator but the translation is

- is complicated (not simple syntactical substitutions) ;
- is not intuitive or illustrative
- does not match any implementation
\Rightarrow extend the λ-calculus with recursive let blocks.

λ-calculus with Constants \& Letrec

```
\(\mathrm{E}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{E}| \mathrm{EE}\)
    | Cond (E, E, E)
    | \(\mathrm{PF}_{\mathrm{k}}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{k}}\right)\)
        | \(\mathrm{CN}_{0}\)
        \(\left|\mathrm{CN}_{\mathrm{k}}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{k}}\right)\right| \mathrm{CN}_{\mathrm{k}}\left(\mathrm{SE}_{1}, \ldots, \mathrm{SE}_{\mathrm{k}}\right)<_{\text {not }}\) in
        | let \(S\) in \(E \quad\) initial
    \(\mathrm{PF}_{1}::=\) negate \(\mid\) not \(|\ldots| \operatorname{Prj}_{1}\left|\operatorname{Prj}_{2}\right| \ldots\) terms
    \(\mathrm{PF}_{2}::=+\mid \ldots\)
    \(\mathrm{CN}_{0}::=\) Number | Boolean
    \(\mathrm{CN}_{2}::=\) cons |..
    Statements
        \(S::=\varepsilon|x=E| S ; S\)
```

Variables on the LHS in a let expression must be pairwise distinct

Issues in giving semantics for lets- 1

1. Creating redexes
((let S in $\left.\left.\lambda x . e_{1}\right) e_{2}\right)$
How do we juxtapose

$$
\left(\lambda \times . \mathrm{e}_{1}\right) \mathrm{e}_{2} \quad ?
$$

Issues in giving semantics for lets- 2

2. How to refer to a variable binding let
$f=\lambda x . e_{1}$
$y=e_{2} e_{3}$ in
(f y) +y
Solution:
Instantiation rules

How and when f and y refer to their definitions

$$
\left(\left(\lambda x \cdot e_{1}\right) y\right)+y ?
$$

How to define the operational semantics of let blocks: Environments

Eval [[e]] ρ
environment

An environment-based interpreter.

- An environment where all the (variable name, value) bindings are kept and is passed around for expression evaluation
- When a let expression is encountered the environment is extended with all the let-bindings. Very complicated if the environment contains unevaluated expressions
- Not abstract enough - too many concrete data structures and associated functions for proper execution

How to define the operational

 semantics of let blocks: graphsA let simply represents a wiring diagram, i.e., a graph

- Quite complicated to explain β-substitution in a graph based interpreter

How to define the operational semantics of let blocks: via a calculus

- Rewrite rules
- Lifting rules
- Instantiation rules (need some new way of writing rules): contexts, ...
- Reduction Strategy
- Normal forms? Equivalences?
let
$x=5$
in x
x

let$\operatorname{in}^{x}=5$

5

the $\lambda_{\text {let }}$ calculus

Lifting Rules

(let S^{\prime} in e^{\prime}) is the α-renamed (let S in e) to avoid name conflicts in the following rules:
$x=$ let S in $e \quad \rightarrow x=e^{\prime} ; S^{\prime}$
let S_{1} in (let S in $\left.e\right) \rightarrow$ let $S_{1} ; S^{\prime}$ in e^{\prime}
(let S in e) $e_{1} \rightarrow$ let S^{\prime} in $e^{\prime} e_{1}$
Cond((let S in e), $\left.\mathrm{e}_{1}, \mathrm{e}_{2}\right)$

$$
\rightarrow \text { let } S^{\prime} \text { in } \operatorname{Cond}\left(e^{\prime}, e_{1}, e_{2}\right)
$$

$P F_{k}\left(e_{1}, \ldots(\right.$ let S in $\left.e), \ldots e_{k}\right)$
\rightarrow let S^{\prime} in ${P F_{k}}\left(e_{1}, \ldots e^{\prime}, \ldots e_{k}\right)$

$\lambda_{\text {let }}$ Instantiation Rules

A free variable in an expression can be instantiated by a simple expression

Instantiation rule 1
(let $x=a ; S$ in $C[x]) \rightarrow\left(\right.$ let $x=a ; S$ in $\left.C^{\prime}[a]\right)$

renamed C[] to avoid freevariable capture

Instantiation rule 2

$$
(x=a ; S C[x]) \rightarrow\left(x=a ; S C^{\prime}[a]\right)
$$

Instantiation rule 3

$$
x=a \quad \rightarrow \quad x=C^{\prime}[C[x]]
$$

$$
\text { where } \mathrm{a}=\mathrm{C}[\mathrm{x}]
$$

Once we have lets we use them

 elsewhere too ...The normal β-rule

$$
(\lambda x . e) e_{a} \rightarrow e\left[e_{a} / x\right]
$$

is replaced the following β-rule

$$
\begin{aligned}
(\lambda x . e) e_{a} & \rightarrow \text { let } t=e_{a} \text { in } e[t / x] \\
& \text { where } t \text { is a new variable }
\end{aligned}
$$

and the Instantiation rules which are used to refer to the value of a variable

