Some more thoughts on A,

Arvind
Computer Science and Artificial Intelligence Laboratory
M.L.T.

September 21, 2006

September 21, 2006 http://www.csg.csail.mit.edu/6.827 LO4Ext-1

Why A, Calculus ?

Programming without (recursive) let blocks is
tedious

Recursive let blocks can be translated into the
A-calculus with constants and Y combinator but the
translation is
= is complicated (nhot simple syntactical
substitutions) ;

« |s not intuitive or illustrative

e does not match any implementation
= extend the A-calculus with recursive let
blocks.

| September 21, 2006 http://www.csq.csail.mit.edu/6.827 LO4EXxt-2

A-calculus with Constants & Letrec
E::= x| ™xE | EE
| Cond (E, E, E)
| PF(Eq,-.-,E)
| CN,
| CNL(Eq,-.-,E) | CNL(SE,,..., SEid_)
| let SinE notin
initial
PF, ::=negate | not | ... | Prj,| Prj, | ... terms
PF, :i=+ | ...
CNgy ::= Number | Boolean
CN, ::=cons | ...
Statements
S:i=¢|x=E | S;S
Variables on the LHS in a let expression must be
pairwise distinct
| September 21, 2006 http://www.csa.csail.mit.edu/6,827 LO4EXt-3

Issues in giving semantics for lets- 1

1. Creating redexes
((let S in Ax.e;) e,)
How do we juxtapose

(x.ep) e, ?

Solution:
Lifting rules

| September 21, 2006 http://www.csq.csail.mit.edu/6.827 LO4Ext-4

Issues in giving semantics for lets- 2

2. How to refer to a variable binding

let
f=2x.e;
=e,e
in y 273 Solution:
Instantiation rules
fy)+y

How and when f and y refer to their definitions

((x.e)) y)+y ?

| September 21, 2006 http://www.csa.csail. mit.edu/6.827 LO4Ext-5

How to define the operational semantics
of let blocks: Environments

Eval [[e]]
N

environment

An environment-based interpreter.

— An environment where all the (variable name,
value) bindings are kept and is passed around for
expression evaluation

— When a let expression is encountered the
environment is extended with all the let-bindings.
Very complicated if the environment contains
unevaluated expressions

— Not abstract enough — too many concrete data

structures and associated functions for proper
execution

| September 21, 2006 http://www.csq.csail.mit.edu/6.827 LO4Ext-6

How to define the operational
semantics of let blocks: graphs

A let simply represents a wiring diagram, i.e., a graph

— Quite complicated to explain B-substitution in a
graph based interpreter

| September 21, 2006 http://www.csa.csail. mit.edu/6.827 LO4Ext-7

How to define the operational
semantics of let blocks: via a calculus

* Rewrite rules
— Lifting rules

— Instantiation rules (need some new way of writing
rules): contexts, ...

< Reduction Strategy
< Normal forms? Equivalences?

let let let
X = X=5 Xx=5
in in y=26
X 5 in
X

the %, calculus

| September 21, 2006 http://www.csq.csail.mit.edu/6.827 LO4Ext-8

Lifting Rules

(let S’ in €’) is the g-renamed (let S in e) to
avoid name conflicts in the following rules:

Xx=letSine - x=e€3; 8
letS;in(letSine) —» letS;; S ine
(letSine) e; — letS in e e;

Cond((let Sin e), e, e,)
— let S’ in Cond(e’, e, €,)

PF.(e,,...(let Sin e),...e)
— let S’ in PF (e,,...€,...€,)

| September 21, 2006 http://www.csa.csail. mit.edu/6.827 LO4Ext-9

Mot INStantiation Rules

A free variable in an expression can be instantiated
by a simple expression

Instantiation rule 1
(letx=a;SinC[x]) > (letx=a; S in‘ Clal)
/

‘ simple expression ‘ free occurrence renamed C[] to
of X in some avoid free-
context C variable capture

Instantiation rule 2
(x=a; SC[x]) > (x=a; SC[a])

Instantiation rule 3
X =a - x =C[C[x]]
where a = C[X]

| September 21, 2006 http://www.csq.csail.mit.edu/6.827 LO4Ext-10

Once we have lets we use them
elsewhere too ...

The normal B-rule
(Ax.e) e, — e [e,/X]
is replaced the following B-rule

(Ax.e) e,—> let t = e, in e[t/X]
where t is a new variable

and the Instantiation rules which are used to
refer to the value of a variable

| September 21, 2006 http://www.csa.csail.mit.edu/6,827 LO4EXxt-11

