
1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L04Ext-1September 21, 2006 http://www.csg.csail.mit.edu/6.827

Some more thoughts on λlet

September 21, 2006

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-2

Why λlet Calculus ?

Programming without (recursive) let blocks is
tedious

Recursive let blocks can be translated into the
λ-calculus with constants and Y combinator but the
translation is

• is complicated (not simple syntactical
substitutions) ;

• is not intuitive or illustrative

• does not match any implementation
⇒ extend the λ-calculus with recursive let

blocks.

2

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-3

λ-calculus with Constants & Letrec
E ::= x | λx.E | E E

| Cond (E, E, E)
| PFk(E1,...,Ek)
| CN0
| CNk(E1,...,Ek) | CNk(SE1,...,SEk)
| let S in E

PF1 ::= negate | not | ... | Prj1| Prj2 | ...
PF2 ::= + | ...
CN0 ::= Number | Boolean
CN2 ::= cons | ...

Statements
S ::= ε | x = E | S; S

Variables on the LHS in a let expression must be
pairwise distinct

not in
initial
terms

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-4

Issues in giving semantics for lets- 1

1. Creating redexes

((let S in λx.e1) e2)

How do we juxtapose

(λx.e1) e2 ?

Solution:
Lifting rules

3

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-5

Issues in giving semantics for lets- 2

2. How to refer to a variable binding
let

f = λx.e1
y = e2 e3

in
(f y) + y

How and when f and y refer to their definitions

((λx.e1) y) + y ?

Solution:
Instantiation rules

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-6

How to define the operational semantics
of let blocks: Environments

An environment-based interpreter.
– An environment where all the (variable name,

value) bindings are kept and is passed around for
expression evaluation

– When a let expression is encountered the
environment is extended with all the let-bindings.
Very complicated if the environment contains
unevaluated expressions

– Not abstract enough – too many concrete data
structures and associated functions for proper
execution

Eval [[e]] ρ

environment

4

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-7

How to define the operational
semantics of let blocks: graphs

– Quite complicated to explain β-substitution in a
graph based interpreter

let
f = λx.e1
y = e2 e3

in
(f y) + y

λx

e1

f

e2 e3

ap y

A let simply represents a wiring diagram, i.e., a graph

+

ap

root

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-8

How to define the operational
semantics of let blocks: via a calculus

• Rewrite rules
– Lifting rules
– Instantiation rules (need some new way of writing

rules): contexts, ...

• Reduction Strategy
• Normal forms? Equivalences?

let
x = 5

in
x

let
x = 5

in
5

5 let
x = 5
y = 6

in
x

the λlet calculus

5

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-9

Lifting Rules
(let S’ in e’) is the α-renamed (let S in e) to
avoid name conflicts in the following rules:

x = let S in e →

let S1 in (let S in e) →

(let S in e) e1 →

Cond((let S in e), e1, e2)
→

PFk(e1,...(let S in e),...ek)
→

x = e’; S’

let S1; S’ in e’

let S’ in e’ e1

let S’ in Cond(e’, e1, e2)

let S’ in PFk(e1,...e’,...ek)

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-10

λlet Instantiation Rules

A free variable in an expression can be instantiated
by a simple expression

Instantiation rule 2
(x = a ; SC[x]) →

simple expression free occurrence
of x in some
context C

renamed C[] to
avoid free-
variable capture

Instantiation rule 1
(let x = a ; S in C[x]) → (let x = a ; S in C’[a])

Instantiation rule 3
x = a →
where a = C[x]

(x = a ; SC’[a])

x = C’[C[x]]

6

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L04Ext-11

Once we have lets we use them
elsewhere too ...

The normal β-rule

(λx.e) ea → e [ea/x]

is replaced the following β-rule

(λx.e) ea → let t = ea in e[t/x]
where t is a new variable

and the Instantiation rules which are used to
refer to the value of a variable

