
1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L05-1September 21, 2006 http://www.csg.csail.mit.edu/6.827

Types and Simple Type Inference

September 21, 2006

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-2

Outline

• General issues

• Type instances

• Type Unification

• Type Inference rules for a simple non-
polymorphic type system

• Type Inference rules for a polymorphic
type system

• Overloading next time ...

2

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-3

What are Types?

• A method of classifying objects (values) in
a language

x :: τ

says object x has type τ or object x
belongs to a type τ

• τ denotes a set of values.

This notion of types is different from types in
languages like C, where a type is a storage class
specifier.

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-4

Type Correctness

• If x :: τ then only those operations that are
appropriate to set τ may be performed on x.

• A program is type correct if it never performs
a wrong operation on an object.

- Add an Int and a Bool
- Head of an Int
- Square root of a list

3

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-5

Type Safety

• A language is type safe if only type
correct programs can be written in that
language.

• Most languages are not type safe, i.e.,
have “holes” in their type systems.

Fortran: Equivalence, Parameter passing
Pascal: Variant records, files
C, C++: Pointers, type casting

However, Java, CLU, Ada, ML, Id, Haskell, pH
etc. are type safe.

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-6

Type Declaration vs Reconstruction

• Languages where the user must declare the types
– CLU, Pascal, Ada, C, C++, Fortran, Java

• Languages where type declarations are not needed
and the types are reconstructed at run time
– Scheme, Lisp

• Languages where type declarations are generally not
needed but allowed, and types are reconstructed at
compile time
– ML, Id, Haskell, pH

A language is said to be statically typed if type-checking
is done at compile time

4

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-7

Polymorphism

• In a monomorphic language like Pascal,
one defines a different length function for
each type of list

• In a polymorphic language like ML, one
defines a polymorphic type (list t), where t
is a type variable, and a single function
for computing the length

• pH and most modern functional languages
have polymorphic objects and follow the
Hindley-Milner type system.

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-8

Type Instances
The type of a variable can be instantiated

differently within its lexical scope.

let
id = \x.x

in
((id1 5), (id2 True))

id1 :: ?

id2 :: ?

Both id1 and id2 can be regarded as instances of type

?

Int --> Int

Bool --> Bool

t --> t

5

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-9

Type Instances: another example

twice1 :: ?

twice2 :: ?

((I -> I) -> I -> I) ->
(I -> I) -> (I -> I)

let
twice :: (t -> t) -> t -> t
twice f x = f (f x)

in
twice1 twice2 (plus 3) 4

(I -> I) -> I -> I

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-10

Type Instantiation:
λ-bound vs Let-bound Variables

Only let-bound identifiers can be instantiated
differently.

let
twice f x = f (f x)

in
twice twice succ 4

vs.

let
twice f x = f (f x)
foo g = (g g succ) 4

in
foo twice

foo is not
type correct !

Generic vs. Non-generic type variables

6

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-11

A mini Language (λ-calculus + let)
to study Hindley-Milner Types

• There are no types in the syntax of the language!

• The type of each subexpression is derived by the
Hindley-Milner type inference algorithm.

but first a Simple Type System ...

Expressions
E ::= c constant

| x variable
| λx. E abstraction
| (E1 E2) application
| let x = E1 in E2 let-block

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-12

A Simple Type System

Types
τ ::= ι base types

| t type variables
| τ--> τ2 Function types

Type Environments
TE ::= Identifiers --> Types

7

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-13

Type Inference Issues

• What does it mean for two types τa and τb to be equal?
– Structural Equality

Suppose τa = τ1 --> τ2
τb = τ3 --> τ4

Is τa = τb ? iff τ1 = τ3 and τ2 = τ4

• Can two types be made equal by choosing appropriate
substitutions for their type variables?
– Robinson’s unification algorithm

Suppose τa = t1 --> Bool
τb = Int --> t2

Are τa and τb unifiable ? if t1= Int and t2= Bool

Suppose τa = t1--> Bool
τb = Int --> Int

Are τa and τb unifiable ? No

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-14

Simple Type Substitutions
needed to define type unification

A substitution is a map
S : Type Variables --> Types

S = [τ / t1,..., τn / tn]

τ’ = S τ τ’ is a Substitution Instance of τ
Example:

S = [(t --> Bool) / t1]
S(t1 --> t1) = ?

Types
τ ::= ι base types (Int, Bool ..)

| t type variables
| τ1 --> τ2 Function types

Substitutions can be composed, i.e., S2 S1
Example:

S1 = [(t --> Bool) / t1] ; S2 = [Int / t]

S2 S1 (t1 --> t1) = ?

(t --> Bool) --> (t --> Bool)

(Int --> Bool) --> (Int --> Bool)

8

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-15

Unification
An essential subroutine for type inference

def Unify(τ1, τ2) =
case (τ1, τ2) of

(τ1, t2) = [τ1 / t2] provided t2 ∉ FV(τ1)
(t1, τ2) = [τ2 / t1] provided t1 ∉ FV(τ2)
(ι1, ι2) = if (eq? ι1 ι2) then []

else fail
(τ11-->τ12, τ21 -->τ22)

=

Unify(τ1, τ2) tries to unify τ1 and τ2 and returns a
substitution if successful

Does the order
matter?

let S1=Unify(τ11, τ21)
S2=Unify(S1(τ12), S1(τ22))

in S2 S1

otherwise = fail

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-16

Type Inference Rules
Typing: TE |-- e : τ

Suppose we want to assert (prove) that given some type
environment TE, the expression (e1 e2) has the type τ’.

Then it must be the case that the same TE implies that e1
has type τ-->τ’ and e2 has the type τ .

Such an inference rule can be written as:

(App) TE ├ e1 : TE ├ e2 :
 TE ├ (e1 e2) : τ’

τ-->τ’ τ

9

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-17

Simple Type Inference Rules

Typing: TE ├ e : τ

(App) TE ├ e1 : τ-->τ’ TE ├ e2 : τ
 TE ├ (e1 e2) : τ’

(Abs)
TE ├ λx.e : τ-->τ’

(Var)
TE ├ x : τ

(Const)
TE ├ c : τ

(Let)
TE ├ (let x = e1 in e2) : τ’

TE + {x : τ} ├ e : τ’

(x : τ) ε TE

typeof(c) = τ

TE+{x:τ} ├ e1: τ TE+{x:τ} ├ e2:τ’

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-18

Inference Algorithm

W(TE, e) returns (S,τ) such that S (TE) |-- e : τ

The type environment TE records the most
general type of each identifier while the
substitution S records the changes in the type
variables

Def W(TE, e) =
Case e of

x = ...
λx.e = ...
(e1 e2) = ...
let x = e1 in e2 = ...

10

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-19

Inference Algorithm (cont.)

Def W(TE, e) = Case e of
x =

if (x ∉ Dom(TE)) then Fail
else let τ = TE(x);

in ({}, τ)
λx.e =

let (S1, τ1) = W(TE + { x : u }, e);
in (S1, S1(u) --> τ1)

(e1 e2) =

let x = e1 in e2
=

u’s
represent
new type
variables

let (S1, τ1) = W(TE, e1)
(S2, τ2) = W(S1(TE), e2)
S3 = Unify(S2(τ1), τ2 --> u);

in (S3 S2 S1, S3(u))

let (S1, τ1) = W(TE + {x : u}, e1);
S2 = Unify(S1(u), τ1);
(S3, τ2) = W(S2 S1(TE) + {x : τ1}, e2);

in (S3 S2 S1, τ2)

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-20

Type Inference

Let fact = λn.if (n == 0) then 1
else n * fact (n-1)

In fact

11

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-21

Inferring Polymorphic Types

let
id = λx. x

in
... (id True) ... (id 1) ...

