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Outline

• General issues

• Type instances

• Type Unification

• Type Inference rules for a simple non-
polymorphic type system

• Type Inference rules for a polymorphic 
type system 

• Overloading          next time ...
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What are Types?

• A method of classifying objects (values) in 
a language

x :: τ

says object x has type τ or object x 
belongs to a type τ

• τ denotes a set of values.

This notion of types is different from types in 
languages like C, where a type is a storage class 
specifier.
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Type Correctness

• If x :: τ then only those operations that are
appropriate to set τ may be performed on x.

• A program is type correct if it never performs 
a wrong operation on an object.

- Add an Int and a Bool
- Head of an Int
- Square root of a list
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Type Safety

• A language is type safe if only type 
correct programs can be written in that 
language. 

• Most languages are not type safe, i.e., 
have “holes” in their type systems.

Fortran:  Equivalence, Parameter passing
Pascal:   Variant records, files
C, C++:   Pointers, type casting

However, Java, CLU, Ada, ML, Id, Haskell, pH 
etc. are type safe.
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Type Declaration vs Reconstruction

• Languages where the user must declare the types 
– CLU, Pascal, Ada, C,  C++, Fortran, Java

• Languages where type declarations are not needed 
and the types are reconstructed at run time
– Scheme, Lisp

• Languages where type declarations are generally not 
needed but allowed, and types are reconstructed at 
compile time
– ML, Id, Haskell, pH

A language is said to be statically typed if type-checking 
is done at compile time
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Polymorphism

• In a monomorphic language like Pascal, 
one defines a different length function for 
each type of list  

• In a polymorphic language like ML, one 
defines a polymorphic type (list t), where t 
is a type variable, and a single function
for computing the length

• pH and most modern functional languages 
have polymorphic objects and follow the 
Hindley-Milner type system.
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Type Instances
The type of a variable can be instantiated 

differently within its lexical scope.

let
id = \x.x

in
((id1 5), (id2 True))

id1 ::            ?

id2 ::            ?

Both id1 and id2 can be regarded as instances of type

?

Int --> Int

Bool --> Bool

t --> t
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Type Instances: another example

twice1 :: ?

twice2 :: ?

((I -> I) -> I -> I) -> 
(I -> I) -> (I -> I)

let 
twice :: (t -> t) -> t -> t
twice f x = f (f x)

in
twice1 twice2 (plus 3) 4

(I -> I) -> I -> I
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Type Instantiation:
λ-bound vs Let-bound Variables

Only let-bound identifiers can be instantiated 
differently.

let 
twice f x = f (f x)

in
twice twice succ 4

vs.

let 
twice f x = f (f x)
foo g = (g g succ) 4 

in
foo twice

foo is not 
type correct !

Generic vs. Non-generic type variables



6

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-11

A mini Language (λ-calculus + let) 
to study Hindley-Milner Types

• There are no types in the syntax of the language!

• The type of each subexpression is derived by the 
Hindley-Milner type inference algorithm.

but first a Simple Type System ...

Expressions 
E ::= c constant 

|  x variable
|  λx. E abstraction
|  (E1 E2) application
| let x = E1 in E2 let-block
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A Simple Type System

Types
τ   ::= ι  base types 

| t  type variables
| τ--> τ2 Function types

Type Environments 
TE ::= Identifiers  --> Types
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Type Inference Issues

• What does it mean for two types τa and τb to be equal?
– Structural Equality

Suppose τa = τ1 --> τ2
τb = τ3 --> τ4

Is τa = τb ? iff τ1 = τ3 and τ2 = τ4

• Can two types be made equal by choosing appropriate 
substitutions for their type variables?
– Robinson’s unification algorithm

Suppose τa = t1    --> Bool
τb = Int --> t2

Are τa and τb unifiable ? if t1= Int and t2= Bool

Suppose τa = t1--> Bool
τb = Int --> Int

Are τa and τb unifiable ? No
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Simple Type Substitutions
needed to define type unification

A substitution is a map
S : Type Variables  --> Types

S = [τ / t1,..., τn / tn]

τ’ = S τ τ’ is a Substitution Instance of  τ
Example:

S = [(t --> Bool) / t1]
S( t1 --> t1) = ?

Types
τ ::= ι  base types (Int, Bool ..)

|  t  type variables
|  τ1 --> τ2 Function types

Substitutions can be composed, i.e., S2 S1
Example:

S1 = [(t --> Bool) / t1] ; S2 = [Int / t]

S2 S1 ( t1 --> t1) = ?

( t --> Bool) --> ( t --> Bool)

( Int --> Bool) --> ( Int --> Bool)
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Unification
An essential subroutine for type inference

def Unify(τ1, τ2) =
case (τ1, τ2) of

(τ1, t2) = [τ1 / t2]  provided t2 ∉ FV(τ1)
(t1, τ2) = [τ2 / t1]  provided t1 ∉ FV(τ2)
(ι1, ι2) = if (eq? ι1 ι2) then [ ]

else fail
(τ11-->τ12, τ21 -->τ22)

=

Unify(τ1, τ2)  tries to unify τ1 and τ2 and returns a 
substitution if successful 

Does the order 
matter?

let S1=Unify(τ11, τ21) 
S2=Unify(S1(τ12), S1(τ22))

in S2 S1

otherwise = fail

September 21, 2006 http://www.csg.csail.mit.edu/6.827 L05-16

Type Inference Rules
Typing: TE |-- e : τ

Suppose we want to assert (prove) that given some type 
environment TE, the expression (e1 e2) has the type τ’.

Then it must be the case that the same TE implies that e1
has type τ-->τ’ and e2 has the type τ .

Such an inference rule can be written as:

(App) TE ├ e1 : TE ├ e2 :  
 TE ├ (e1 e2) : τ’

τ-->τ’ τ
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Simple Type Inference Rules

Typing: TE ├ e : τ

(App) TE ├ e1 : τ-->τ’ TE ├ e2 : τ
 TE ├ (e1 e2) : τ’

(Abs)
TE ├ λx.e :  τ-->τ’

(Var)
TE ├ x : τ 

(Const)
TE ├ c : τ

(Let)
TE ├ (let x = e1 in e2) : τ’

TE + {x : τ} ├ e : τ’

(x : τ) ε  TE

typeof(c) = τ

TE+{x:τ} ├ e1: τ      TE+{x:τ} ├ e2:τ’
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Inference Algorithm

W(TE, e) returns (S,τ) such that S (TE) |-- e : τ

The type environment TE records the most 
general type of each identifier while the 
substitution S records the changes in the type 
variables  

Def W(TE, e) =
Case e of

x  = ...
λx.e  = ...
(e1 e2) = ...
let  x = e1 in e2 = ...
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Inference Algorithm (cont.)

Def W(TE, e) = Case e of
x  =

if (x ∉ Dom(TE)) then Fail
else  let τ  = TE(x); 

in ({}, τ )
λx.e  =

let (S1, τ1) = W(TE + { x : u }, e);
in (S1, S1(u) --> τ1)

(e1 e2) =

let  x = e1 in  e2
= 

u’s 
represent 
new type 
variables

let (S1, τ1) = W(TE, e1)
(S2, τ2) = W(S1(TE), e2)
S3 = Unify(S2(τ1), τ2 --> u);

in (S3 S2 S1, S3(u))

let (S1, τ1) = W(TE + {x : u}, e1);
S2 = Unify(S1(u), τ1);
(S3, τ2) = W(S2 S1(TE) + {x : τ1}, e2);

in (S3 S2 S1, τ2)
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Type Inference

Let fact = λn.if (n == 0) then 1
else n * fact (n-1)

In fact
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Inferring Polymorphic Types

let  
id = λx. x 

in
... (id True) ... (id 1) ...


