
1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L07-1September 28, 2006 http://www.csg.csail.mit.edu/6.827

Overloading, Type Classes,
and Algebraic Datatypes

September 28, 2006

Delivered by Michael Pellauer

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-2

Last Time…

• Type Inference Rules
(App) TE ├ e1 : τ -> τ’ TE ├ e2 : τ
 TE ├ (e1 e2) : τ’

(Abs)
TE ├ λx.e : τ -> τ’

…
• Type Inference Algorithm

Def W(TE, e) = Case e of …
λx.e = let (S1, τ1) = W(TE + { x : u }, e);

in (S1, S1(u) -> τ1)
(e1 e2) = let (S1, τ1) = W(TE, e1);

(S2, τ2) = W(S1(TE), e2);
S3 = Unify(S2(τ1), τ2 -> u);

in (S3 S2 S1, S3(u))…

TE + {x : τ} ├ e : τ’

2

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-3

Last Time…

• Hindley-Milner Type System
– Allows ForAll Generalization and Instantiation

• What’s the type of:

fst x y = x
snd x y = y

complicated x = fst (snd x)

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-4

Aside: Type Annotations

• When programming in Haskell, we could let the
compiler infer all the types

• However this can be difficult for a human to read.
Consider:

c f g = \x -> g (f x)

vs
c :: (a -> b) -> (b -> c) -> (a -> c)
c f g = \x -> g (f x)

• Type signatures serve as documentation and are
as important as a good function name

3

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-5

Inference Algorithm with Annotations

• Question 1: Are annotations an
assertion, or a hint?
– In Haskell, they are an assertion

• Question 2: How should the inference
algorithm change?
– First approach: Add annotations as a constraint
– Second approach: Attempt to unify inferred type

with given type

• Question 3: What happens if the user’s
annotation is too general? Too specific?
– Too general: an error
– Too specific: The user-given type becomes the

actual type of the function

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-6

Conclusion: Type Inference

• Now you understand the Haskell type
system!
– …Almost

• The Hindley-Milner system allows for
parametric polymorphism
– Similar to Java Generics

• Haskell also features a second type of
polymorphism: Overloading
– Somewhat similar to Java virtual functions

4

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-7

Overloading ad hoc polymorphism

A symbol can represent multiple values each with a
different type. For example:

+ represents
plusInt :: Int -> Int -> Int
plusFloat :: Float -> Float -> Float

The context determines which value is denoted.

The overloading of an identifier is resolved when
the unique value associated with the symbol in that
context can be determined.

Compiler tries to resolve overloading but sometimes
can't. The user must declare the type explicitly in
such cases.

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-8

Overloading vs. Polymorphism

Both allow a single identifier to be used for
multiple types.

However, the two concepts are very different:

1. A polymorphic function represents a single
function that works for many types.

Overloading uses the same name for
several different functions.

2. All specific types of a polymorphic identifier
are instances of a most general type

5

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-9

The Most General Type
The most general type of “twice f = \x -> f (f x)” is

∀t.(t -> t) -> (t -> t)
Any type can be substituted for t to get an instance
of twice:
(Int -> Int) -> (Int -> Int)
(String -> String) -> (String -> String)

Overloaded + does not have a most general type:
plusInt :: Int -> Int -> Int
plusFloat :: Float -> Float -> Float

Has + type ∀t. t -> t -> t ?
No! + makes sense for some types t, but not for all!

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-10

Handling Overloading

• Not a problem in explicitly typed languages:
the compiler has enough context information
to resolve the overloading.

• Not a problem in OO languages (e.g., Java)
where objects carry their type at runtime,
and dynamic dispatch is possible.

• Hard to integrate in languages that use type
inference
– ML: ad-hoc support for limited cases (==)
– Haskell: real solution – type classes

Allows overloading of user-defined symbols

6

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-11

Type Classes

Type classes group together related functions
(e.g., +, -) that are overloaded over the same
types (e.g., Int, Float):

class Num a where
(==), (/=) :: a -> a -> Bool
(+), (-), (*) :: a -> a -> a
negate :: a -> a
...

instance Num Int where
x == y = integer_eq x y
x + y = integer_add x y
…

instance Num Float where ...

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-12

Overloaded Constants
(Num t) is read as a predicate

“t is an instance of class Num”

sqr :: (Num a) => a -> a
sqr x = x * x

What about constants? Consider

plus1 x = x + 1

If 1 is treated as an integer then plus1 cannot be
overloaded. In pH numeric literals are overloaded
and considered a short hand for

(fromInteger the_integer_1_value)
where

fromInteger :: (Num a) => Integer -> a

7

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-13

The Equality Operator

• Equality is an overloaded function, not a
polymorphic one

class Eq a where
(==), (/=) :: a -> a -> Bool
a /= b = not (a == b)

• Equality needs to be defined for each
type of interest.

• Default definition for /=
• Smart compilers can derive the code for

structural equality

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-14

Type Class Hierarchy

class (Eq a) => Ord a where
(<),(<=),(>=),(>) :: a -> a -> Bool

max, min :: a -> a -> a

• Eq is a superclass of Ord:
– If type a is an instance of Ord, a is also an

instance of Eq

• Ord inherits the specification of (==),
(/=) from Eq

8

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-15

Read and Show Functions
The raw input from a keyboard or output to the
screen or file is usually a string. However, different
programs interpret the string differently depending
upon their type signature.

A program to calculate monthly mortgage payments
may assign the following signatures:

read :: String -> Int - principal, duration
read :: String -> Float - rate
show :: Float -> String - monthly payments

what is the type of read and show ?

Polymorphic ?read :: String -> a
show :: a -> String

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-16

Overloaded Read and Show
Haskell has a type class Read of “readable” types
and a type class Show of “showable” types

read :: Read a => String -> a
show :: Show a => a -> String

9

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-17

Ambiguous Overloading

identity :: String -> String
identity x = show (read x)

What is the type of (read x) ?

Cannot be resolved ! Many different types would do.

Compiler requires type declarations in such cases.

identity :: String -> String
identity x = show ((read x) :: Int)

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-18

Implementation

How does sqr find the correct function for * ?
sqr :: (Num a) => a -> a
sqr x = x * x

An overloaded function is compiled assuming
an extra “dictionary” argument.

sqr’ = \class_inst x ->
(class_inst.(*)) x x

Then (sqr 23) will be compiled as

sqr’ IntClassInstance 23

Most dictionaries can be eliminated at compile
time by function specialization.

10

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-19

Haskell Type Classes
vs. Java Classes

• Similarities
– Group together common sets of operations
– Class hierarchy: super/sub-classes, inheritance
– Dictionaries ≈ virtual method tables (vtables)

• Differences
– The instance of a type class is a type, while the

instance of a class is an object; types ≠ objects
– No notion of mutable state in Haskell
– In Java, objects carry “dictionaries” (vtables); in

Haskell, dictionaries are separate from values
(connected by the type system)

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-20

Aside: Static vs Dynamic Typing

• What is the type of x?
– let x = 5
– let x = False
– let x = if False then 5 else False
– let x = if readBoolFromUser() then 5 else False

• Haskell is a Statically typed language
– Types must be determinable at compilation time

• Scheme, Lisp are dynamically typed
– Values are tagged with types at runtime and dynamically

checked

• In Haskell, one represents dynamic choice
between different types with algebraic
datatypes

11

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-21

Algebraic datatypes

• Algebraic types are tagged unions of products
• Example

data Shape = Line Pnt Pnt
| Triangle Pnt Pnt Pnt
| Quad Pnt Pnt Pnt Pnt

keyword

new type

- new "constructors" (a.k.a. "tags", "disjuncts", "summands")
- a k-ary constructor is applied to k type expressions

"union"

"products“ (fields)

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-22

Examples of Algebraic datatypes

data Bool = False | True

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Tree a = Leaf a | Node (Tree a) (Tree a)

data Tree’ a b = Leaf’ a
| Nonleaf’ b (Tree’ a b) (Tree’ a b)

data Course = Course String Int String (List Course)

name number description pre-reqs

12

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-23

Constructors are functions

• Constructors can be used as functions to
create values of the type

let
l1 :: Shape
l1 = Line e1 e2

t1 :: Shape = Triangle e3 e4 e5
q1 :: Shape = Quad e6 e7 e8 e9

in
...

where each "eJ" is an expression of type "Pnt"

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-24

Pattern-matching on algebraic types

• Pattern-matching is used to examine values
of an algebraic type

• A pattern-match has two roles:
– A test: "does the given value match this pattern?"
– Binding ("if the given value matches the pattern, bind

the variables in the pattern to the corresponding parts
of the value")

anchorPnt :: Shape -> Pnt
anchorPnt s = case s of

Line p1 p2 -> p1
Triangle p3 p4 p5 -> p3
Quad p6 p7 p8 p9 -> p6

13

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-25

Pattern-matching scope & don’t cares

• Each clause starts a new scope: can re-
use bound variables

• Can use "don't cares" for bound variables

anchorPnt :: Shape -> Pnt
anchorPnt s = case s of

Line p1 _ -> p1
Triangle p1 _ _ -> p1
Quad p1 _ _ _ -> p1

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-26

Pattern-matching more syntax

• Functions can be defined directly using
pattern-matching

• Pattern-matching can be used in list
comprehensions (later)

anchorPnt :: Shape -> Pnt
anchorPnt (Line p1 _) = p1
anchorPnt (Triangle p1 _ _) = p1
anchorPnt (Quad p1 _ _ _) = p1

(Line p1 p2) <- shapes

14

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-27

Pattern-matching Type safety

• Given a "Line" object, it is impossible to
read "the field corresponding to the third
point in a Triangle object“ because:

– all unions are tagged unions
– fields of an algebraic type can only be examined

via pattern-matching

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-28

Special syntax

• Function type constructor
Int -> Bool

Conceptually:
Function Int Bool

i.e., the arrow is an "infix" type constructor

• Tuple type constructor
(Int, Bool)

Conceptually:
Tuple2 Int Bool

Similarly for Tuple3, ...

15

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-29

Type Synonyms

data Point = Point Int Int

versus

type Point = (Int,Int)

Type Synonyms do not create new types. It is just a
convenience to improve readability.

a new data type

a type synonym

move :: Point -> (Int,Int) -> Point
move (Point x y) (sx,sy) =

Point (x + sx) (y + sy)

versus

move (x,y) (sx,sy) = (x + sx, y + sy)

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-30

Abstract Types

A rational number is a pair of integers but suppose we want
to express it in the reduced form only. Such a restriction
cannot be enforced using an algebraic type.

No pattern matching on abstract data types

module Rationalpackage
(Rational,rational,rationalParts) where

data Rational = RatCons Int Int

rational :: Int -> Int -> Rational
rational x y = let

d = gcd x y
in RatCons (x/d) (y/d)

rationalParts :: Rational -> (Int,Int)
rationalParts (RatCons x y)= (x,y)

16

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-31

List: A Recursive Data Type

A list data type can be constructed in two
different ways:

an empty list Nil
or a non-empty list Cons x xs

- All elements of a list have the same type

- The list type is recursive and polymorphic

the first element the rest of
the elements

data List t = Nil | Cons t (List t)

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-32

Infix notation

Cons x xs ≡ x:xs

This list may be visualized as follows:

2 3 6

2:3:6:Nil ≡ 2:(3:(6:Nil)) ≡ [2,3,6]

List Int ≡ [Int]

17

September 28, 2006 http://www.csg.csail.mit.edu/6.827 L07-33

Example: Split a list
data Token = Word String | Number Int

Split a list of tokens into two lists - a list words
and a list of numbers.

split :: [Token]-> ([String],[Int])

split [] = ([],[])
split (t:ts) = ?

let
(ws,ns) = split ts

in
case t of

Word w -> ((w:ws),ns)
Number n -> (ws,(n:ns))

Next time --- list comprehensions

