List Comprehensions

Arvind

Computer Science and Artificial Intelligence Laboratory

October 3, 2006

M.L.T.

October 3, 2006

http://www.csg.csail.mit.edu/6.827

L08-1

Higher-order List abstractions

map f []
map T (X:xs)

[
‘(f xX):(map F xs)‘ ?

map :: (tx -> ty) -> (List tx) -> (List ty)

foldl ¥ z []
foldl ¥ z (x:

foldl :-: (tz

foldr T z []
foldr ¥ z (x:

foldr :-: (tx

filter p []

filter p (X:xs)

| October 3, 2006

Xs) =
-> tX

Xs)
-> tz

Z
| foldl f (f z X) xs| ?
-> tz) > tz -> (List tx) -> tz

z
f x (foldr f z xs)| ?
-> tz) > tz -> (List tx) -> tz

|l

it p x 7
then x:(filter p xs)
else filter p xs

http://www.csq.csail.mit.edu/6.827

L08-2

Using maps and folds

1. Write sum in terms of fold ‘sum = foldr plus O ‘

2. Write split using foldr
split :: (List Token) -> ((List String),(List Int))

split = foldr £ ([1.[D
f (Word w) (ws,ns) = ((w:ws),ns)
f (Number n) (ws,ns) = (ws,(n:ns))

3. What does function fy do?
fy xys = map second xys
second (X,y) =Yy
fy 2| (List (t1, ©2)) -> (List t2)]

| October 3, 2006 http:.//www.csda.csail. mit.edu/6.827 L08-3

Flattening a List of Lists

append :: (List t) -> (List t) -> (List ©)
append [] ys =ys
append (x:xs) ys = (x:(append xs ys))

flatten :: (List (List t)) -> (List t)
flatten [] = [
flatten (xs:xss) =

append xs (flatten xss)

| October 3, 2006 http://www.csqg.csail.mit.edu/6.827 L08-4

Zipping two lists

Xo 5 Xq

| October 3, 2006

zipWith ¥ []1 [1
zipWith ¥ (x:xs) (y:ys)

| ((F x y):(zipWith T xs ys)) |

What does f do?
T xs = zipWith append xs (init ([]:xs))

Suppose Xs is:

zipWith :: (tx -> ty ->
(List
(List

tz) ->
t™>) ->
ty) -> (List tz)

L1

. % .

1X21

X1

’ Xn—l

http://www.csa.csail. mit.edu/6.827

L08-5

Arithmetic Sequences: Special Lists

| October 3, 2006

[l ..

[5 ..

4]

[1,3 ..
[5,4 -.

[5.5 ..

[1.2,3,4]
[1.3.,5,7,9]

[5.4,3,2,1]

[5.5,5,---1]

[5.6,7,---1]

http://www.csq.csail.mit.edu/6.827

L08-6

Infinite Data Structures

1. ints_from i = i:(ints_from (i+1))

nth n (x:xs) = if n == 1 then X
else nth (n - 1) xs

nth 50 (ints_from 1) --> ?

2. ones = l:ones

nth 50 ones --> ?

3. xs = map T (a:xs)
nth 10 xs > \f(f...(f a)...))"?

These are well defined programs in Haskell. In pH
you will get an answer but the program may not

terminate.
| October 3, 2006 http:.//www.csda.csail. mit.edu/6.827

L08-7

Primes: The Sieve of Eratosthenes

primes = sieve [2..]

sieve (x:xs) = x:(sieve (filter (p x) xs))

pxy=((mod x)=0

nth 100 primes

L08-8

| October 3, 2006 http://www.csq.csail.mit.edu/6.827

List Comprehensions

L08-9

| October 3, 2006 http://www.csa.csail. mit.edu/6.827

List Comprehensions
a convenient syntax

Lel gen, gen, ...]
Examples

[Fx | x<-xs1]
means map f xs

[x | x <= xs, (p]
means filter p xs

[Lfxy]| x<-xs,y<-ys]
means the list
[(F x1 y1),...(Ff x1 yn),
(fFx2yl),...... (f xm yn)]
which is defined by
flatten (map (\ x => (map (\ y -> €) ys) xs))

| October 3, 2006 http://www.csq.csail.mit.edu/6.827

L08-10

Three-Partitions

Generate a list containing all three-partitions
(ncl, nc2, nc3) of a number m, such that

e ncl < nc2 < nc3
encl +nc2+nc3=m

three partitions m =

[(nhcl,nc2,nc3) | ncl <- [0..m],
nc2 <- [0..m],

nc3 <- [0..m], ?
ncl+nc2+nc3 == m,
ncl <= nc2,
nc2 <= nc3 1
| October 3, 2006 http://www.csa.csail.mit.edu/6.827 L08-11

Efficient Three-Partitions

three_partitions m =

[(hcl,nc2,nc3) | ncl <- [O..Ffloor(m/3)].
nc2 <-|[ncl..floor ((m-nc1)/2)], |?

‘nc3 = m-ncl-nc2]‘

| October 3, 2006 http://www.csqg.csail.mit.edu/6.827 L08-12

The Power of List Comprehensions

Ca.»D 1 v <-[1..m], j <~ [1..n]]

using map
point i j = (i.1)
points i = map (point i) [1..n]
all_points :‘map points [1--m]‘ ?

Is this correct?

No, we still need to flatten the list of lists.

| October 3. 2006 http://www.csa.csail.mit.edu/6.827 L08-13

Desugaring!

< Most high-level languages have constructs whose
meaning is difficult to express precisely in a
direct way

« Compilers often translate (“desugar”) high-level
constructs into a simpler language

e Two examples:

— List comprehensions: eliminate List
compressions usings maps etc.

— Pattern Matching: eliminate complex pattern
matching using simple case-expressions

| October 3, 2006 http://www.csqg.csail.mit.edu/6.827 L08-14

List Comprehensions:
Abstract Syntax

[e | Q] where e is an expression and Q is a list of
generators and predicates

There are three cases on Q

1. First element of Q is a generator

[e]l x<-L,Q]

2. First element of Q is a predicate

[LelB, Q1]
3. Q is empty
Lell
| October 3, 2006 http://www.csa.csail.mit.edu/6.827 L08-15

List Comprehensions Semantics

Ruel1.l1 [e] x<-[1.01 =0

Rule 1.2 Lel x<-(Cy:e:),Q01 =
(let x = ¢, In[e] Q] ++
Lel x<-es, Q1

Rule2.1 [e | False, Q] = |1

Rule 2.2 [e] True , Q] = [e] Q1

Rule 3 [Lell = e - [1

| October 3, 2006 http://www.csqg.csail.mit.edu/6.827 L08-16

Desugering: First Attempt

TE[[L e | 11 =e :[1

TE[[L e 1 B, Q1] =
if B then TE[[[e | Q]]] else []

TE[[[e | x<-L, Q1] =

case L of
1 ->11)
t:ts > (let x =t inTE[[[L e | Q

1]
++ TE[[[e | x <&s7 Qll]

)

7
Will unfold infinitely! Not
Need to be more systematic.

| October 3, 2006

http://www.csa.csail. mit.edu/6.827

structural
induction

L08-17

Eliminating Generators

[e] X <- xs] = map (\x-> e) xs

[e] X <-xs, Yy <-ys] =
concat (map (\x-> map (\y-> e) ys) Xxs)

where concat flattens a list:
concat [] = [l

concat (xs:xss) = xs ++ (concat xss)

[e] X <- XS, y<-ys, z<-12zs] =
concat (map (\x->

map (\y->
map (\z-> e) zs) ys) Xs)

| October 3, 2006

http://www.csq.csail.mit.edu/6.827

L08-18

A More General Solution

« Flatten the list after each map.

e Start the process by turning the expression
into a one element list

[e] X <- xs] =
concat (map (\x-> [e]) xs)

[e] X <-xs, y<-ys] =
concat (map (\x->
concat (map (\y-> [e]) ys)) xs)

[e]| X <- Xs, y<-ys, z<-2zs5] =
concat (map (\x->
concat (map (\y->
concat (map (\z-> [e]) zS) ys) Xxs)

| October 3. 2006 http://www.csa.csail.mit.edu/6.827 L08-19

Eliminate the intermediate list

[e] x <- xs] = concat (map (\x-> [e]) xs)

Notice map creates a list which is immediately
consumed by concat. This intermediate list is
avoided by concatMap

concatMap T [] =

concatMap f (x:xs) = (F x) ++ (concatMap T xs)

[e | X <= xs] = concatMap (\x-> [e]) Xxs

[Le]l x<-xs,y<-ys] =

concatMap (\x->
concatMap (\y-> [e]) ys) xs

[e] X<-Xs, y<-ys, z<-2zs] =

concatMap (\x->
concatMap (\y->
concatMap (\z-> [e]) zs) ys) xs

| October 3, 2006 http://www.csqg.csail.mit.edu/6.827 L08-20

10

List Comprehensions with Predicates

[e] X <-xs, p]

= (map (\x-> e) (filter (\x-> p) xs)
= concatMap (\x-> i1f p then [e] else []) xs

[eIX<_XS’ p,y<—yS]

= concatMap (\x-> i1f p then
concatMap (\y-> [e]) ys) else []) xs

| October 3. 2006 http://www.csa.csail.mit.edu/6.827 L08-21

List Comprehensions:
First Functional Implementation- Wadler

TE[[L e | x <- L, Qlll=
concatMap (\x-> TE[[[e | Q1ID L

TE[[L e 1 B, Q1] =
it B then TE[[[e | Q]]] else []

TE[[L e | 1]] =e [

Can we avoid concatenation altogether?

Idea: Build the list from right-to-left
TQI[[e | Q1 ++ L]

where L has already been translated.

| October 3, 2006 http://www.csqg.csail.mit.edu/6.827 L08-22

11

Building the output from right-to-left

[e] X <- xs] =
concat (map (\x-> e) Xxs)

vVersus

[e] X <- xs5] =

let f [] = [1
f (x:xs”) = e: (F xs7)
in
(f xs)
| October 3, 2006 http://www.csa.csail.mit.edu/6.827 L08-23

Building the output from right-to-left

[e] X <-xs, y<-ys] =
concat (map (\x-> map (\y-> e) ys) Xxs)

Versus

[e] Xx<-xs, y<-ys] =

let T [] =0
f (x:xs”) =
let g [] = T xs”
) g (y:ys’) = e:(9 ys’)
in
) (9 ys)
in
(f xs)
| October 3, 2006 http://www.csq.csail.mit.edu/6.827 L08-24

12

List Comprehensions:
Second Functional Implementation-Wadler

TE[[[e | Q1]] = TQ[[[e | Q111 [[L[1]]
TQ[[[e | x <= Ly, QI [[LI]=
let T[] =L
. T (x:xs) = TOQ[[[e | QJI] [[(F xs)]]
L)

TQ[[[e | B, QI [[L]] =
iT B then TQ[[[e | Q11] [[L]] else L

Qe I 1N[L]I =e:-L

This translation is efficient because it never flattens.
The list is built right-to-left, consumed left-to-right.

| October 3. 2006 http://www.csa.csail.mit.edu/6.827 L08-25

The Correctness Issue

How do we decide if a translation is correct?

— if it produces the same answer as some
reference translation, or

— if it obeys some other high-level laws
In the case of comprehensions one may want

to prove that a translation satisfies the
comprehension rewrite rules.

| October 3, 2006 http://www.csqg.csail.mit.edu/6.827 L08-26

13

