
1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L08-1October 3, 2006 http://www.csg.csail.mit.edu/6.827

List Comprehensions

October 3, 2006

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-2

Higher-order List abstractions

map f [] = []
map f (x:xs) = ?

foldl f z [] = z
foldl f z (x:xs) = ?

foldr f z [] = z
foldr f z (x:xs) = ?

filter p [] = []
filter p (x:xs) = ?

(f x):(map f xs)

f x (foldr f z xs)

foldl f (f z x) xs

map :: (tx -> ty) -> (List tx) -> (List ty)

foldr :: (tx -> tz -> tz) -> tz -> (List tx) -> tz

foldl :: (tz -> tx -> tz) -> tz -> (List tx) -> tz

if p x
then x:(filter p xs)
else filter p xs

2

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-3

Using maps and folds
1. Write sum in terms of fold sum = foldr plus 0

2. Write split using foldr
split :: (List Token) -> ((List String),(List Int))

split = foldr f ([],[])

f (Word w) (ws,ns) = ((w:ws),ns)
f (Number n) (ws,ns) = (ws,(n:ns))

3. What does function fy do?
fy xys = map second xys
second (x,y) = y
fy :: (List (t1, t2)) -> (List t2)

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-4

Flattening a List of Lists

flatten :: (List (List t)) -> (List t)
flatten [] = []
flatten (xs:xss) = append xs (flatten xss)

append :: (List t) -> (List t) -> (List t)
append [] ys = ys
append (x:xs) ys = (x:(append xs ys))

3

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-5

Zipping two lists

zipWith f [] [] = []
zipWith f (x:xs) (y:ys) = ?

((f x y):(zipWith f xs ys))

zipWith :: (tx -> ty -> tz) ->
(List tx) ->
(List ty) -> (List tz)

What does f do?
f xs = zipWith append xs (init ([]:xs))

Suppose xs is:
x0 , x1 , x2 , ... , xn

[] , x0 , x1 , ... , xn-1

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-6

Arithmetic Sequences: Special Lists

[1 .. 4] ≡ [1,2,3,4]

[1,3 .. 10] ≡ [1,3,5,7,9]

[5,4 .. 1] ≡ [5,4,3,2,1]

[5,5 .. 10] ≡ ?

[5 ..] ≡ ?

[5,5,5,...]

[5,6,7,...]

4

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-7

Infinite Data Structures
1. ints_from i = i:(ints_from (i+1))

nth n (x:xs) = if n == 1 then x
else nth (n - 1) xs

nth 50 (ints_from 1) --> ?

2. ones = 1:ones
nth 50 ones --> ?

3. xs = map f (a:xs)
nth 10 xs --> ?

These are well defined programs in Haskell. In pH
you will get an answer but the program may not
terminate.

50

1

f(f...(f a)...))

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-8

Primes: The Sieve of Eratosthenes

primes = sieve [2..]

sieve (x:xs) = x:(sieve (filter (p x) xs))

p x y = (y mod x) ≠ 0

nth 100 primes

5

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-9

List Comprehensions

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-10

List Comprehensions
a convenient syntax

[e | gen, gen, ...]

Examples

[f x | x <- xs]
means map f xs

[x | x <- xs, (p x)]
means filter p xs

[f x y | x <- xs, y <- ys]

means the list
[(f x1 y1),...(f x1 yn),
(f x2 y1),......(f xm yn)]

which is defined by
flatten (map (\ x -> (map (\ y -> e) ys) xs))

6

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-11

Three-Partitions

Generate a list containing all three-partitions
(nc1, nc2, nc3) of a number m, such that

• nc1 < nc2 < nc3
• nc1 + nc2 + nc3 = m

three_partitions m =

[(nc1,nc2,nc3) | nc1 <- [0..m],
nc2 <- [0..m],

?nc3 <- [0..m],
nc1+nc2+nc3 == m,
nc1 <= nc2,
nc2 <= nc3]

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-12

Efficient Three-Partitions

three_partitions m =

[(nc1,nc2,nc3) | nc1 <- [0..floor(m/3)],
nc2 <- ?[nc1..floor ((m-nc1)/2)],

nc3 = m-nc1-nc2]

7

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-13

The Power of List Comprehensions

[(i,j) | i <- [1..m], j <- [1..n]]

using map

point i j = (i,j)

points i = map (point i) [1..n]

all_points = ?map points [1..m]

Is this correct?

No, we still need to flatten the list of lists.

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-14

Desugaring!
• Most high-level languages have constructs whose

meaning is difficult to express precisely in a
direct way

• Compilers often translate (“desugar”) high-level
constructs into a simpler language

• Two examples:

– List comprehensions: eliminate List
compressions usings maps etc.

– Pattern Matching: eliminate complex pattern
matching using simple case-expressions

8

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-15

List Comprehensions:
Abstract Syntax
[e | Q] where e is an expression and Q is a list of
generators and predicates

There are three cases on Q

1. First element of Q is a generator
[e | x <- L, Q’]

2. First element of Q is a predicate
[e | B, Q’]

3. Q is empty
[e |]

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-16

List Comprehensions Semantics

Rule 1.1 [e | x <- [], Q] ⇒

Rule 1.2 [e | x <- (ex : exs), Q] ⇒

Rule 2.1 [e | False, Q] ⇒

Rule 2.2 [e | True , Q] ⇒

Rule 3 [e |] ⇒

[]

(let x = ex in [e | Q]) ++
[e | x <- exs, Q]

e : []

[e | Q]

[]

9

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-17

Desugering: First Attempt

TE[[[e |]]] = e :[]

TE[[[e | B, Q]]] =
if B then TE[[[e | Q]]] else []

TE[[[e | x <- L, Q]]] =

Will unfold infinitely!
Need to be more systematic.

case L of
[] -> []

t:ts -> (let x = t in TE[[[e | Q]]])
++ TE[[[e | x <- ts, Q]]]

Not
structural
induction

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-18

Eliminating Generators
[e | x <- xs] ⇒ map (\x-> e) xs

[e | x <- xs, y <- ys, z <- zs] ⇒
concat (map (\x->

map (\y->
map (\z-> e) zs) ys) xs)

[e | x <- xs, y <- ys] ⇒
concat (map (\x-> map (\y-> e) ys) xs)

where concat flattens a list:
concat [] = []
concat (xs:xss) = xs ++ (concat xss)

10

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-19

A More General Solution
• Flatten the list after each map.

• Start the process by turning the expression
into a one element list

[e | x <- xs] ⇒
concat (map (\x-> [e]) xs)

[e | x <- xs, y <- ys] ⇒
concat (map (\x->
concat (map (\y-> [e]) ys)) xs)

[e | x <- xs, y <- ys, z <- zs] ⇒
concat (map (\x->
concat (map (\y->
concat (map (\z-> [e]) zs) ys) xs)

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-20

Eliminate the intermediate list
[e | x <- xs] ⇒ concat (map (\x-> [e]) xs)

Notice map creates a list which is immediately
consumed by concat. This intermediate list is
avoided by concatMap
concatMap f [] = []
concatMap f (x:xs) = (f x) ++ (concatMap f xs)

[e | x <- xs] ⇒ concatMap (\x-> [e]) xs

[e | x <- xs, y <- ys] ⇒

[e | x <- xs, y <- ys, z <- zs] ⇒

concatMap (\x->
concatMap (\y-> [e]) ys) xs

concatMap (\x->
concatMap (\y->
concatMap (\z-> [e]) zs) ys) xs

11

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-21

List Comprehensions with Predicates

[e | x <- xs, p]

⇒ (map (\x-> e) (filter (\x-> p) xs)

⇒ concatMap (\x-> if p then [e] else []) xs

[e | x <- xs, p, y <- ys]

⇒ concatMap (\x-> if p then
concatMap (\y-> [e]) ys) else []) xs

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-22

List Comprehensions:
First Functional Implementation- Wadler

TE[[[e | x <- L, Q]]] =
concatMap (\x-> TE[[[e | Q]]]) L

TE[[[e | B, Q]]] =
if B then TE[[[e | Q]]] else []

TE[[[e |]]] = e :[]

Can we avoid concatenation altogether?

Idea: Build the list from right-to-left

TQ[[[e | Q] ++ L]]

where L has already been translated.

12

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-23

Building the output from right-to-left
[e | x <- xs] ⇒

concat (map (\x-> e) xs)

[e | x <- xs] ⇒
let f [] = []

f (x:xs’) = e: (f xs’)
in

(f xs)

versus

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-24

Building the output from right-to-left
[e | x <- xs, y <- ys] ⇒

concat (map (\x-> map (\y-> e) ys) xs)

[e | x <- xs, y <- ys] ⇒
let f [] = []

f (x:xs’) =
let g [] = f xs’

g (y:ys’) = e:(g ys’)
in

(g ys)
in

(f xs)

versus

13

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-25

List Comprehensions:
Second Functional Implementation-Wadler

TE[[[e | Q]]] = TQ[[[e | Q]]] [[[]]]

TQ[[[e | x <- L1, Q]]] [[L]] =
let f [] = L

f (x:xs) = TQ[[[e | Q]]] [[(f xs)]]
in

(f L1)

TQ[[[e | B, Q]]] [[L]] =
if B then TQ[[[e | Q]]] [[L]] else L

TQ[[[e |]]] [[L]] = e : L

This translation is efficient because it never flattens.
The list is built right-to-left, consumed left-to-right.

October 3, 2006 http://www.csg.csail.mit.edu/6.827 L08-26

The Correctness Issue

How do we decide if a translation is correct?

– if it produces the same answer as some
reference translation, or

– if it obeys some other high-level laws

In the case of comprehensions one may want
to prove that a translation satisfies the
comprehension rewrite rules.

