List Comprehensions

Arvind
Computer Science and Artificial Intelligence Laboratory M.I.T.

October 3, 2006

Higher-order List abstractions

$$
\begin{aligned}
& \begin{array}{ll}
\left.\operatorname{map}_{\mathrm{m}} \mathrm{f}\right] & =[] \\
\operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs}) & =(\mathrm{f} x):(\operatorname{map} \mathrm{f} x \mathrm{~s})
\end{array} \\
& \text { map : : (tx -> ty) -> (List tx) -> (List ty) } \\
& \text { foldl f } z \text { [] } \\
& \begin{array}{l}
=\mathrm{z} \\
=\mathrm{foldl} \mathrm{f}(\mathrm{f} z \mathrm{z}) \mathrm{xs} \quad ?
\end{array} \\
& \text { foldl : : (tz -> tx -> tz) -> tz -> (List tx) -> tz } \\
& \text { foldr f } z \text { [] }=z \\
& \text { foldr } f z \text { (x:xs) }=f x \text { (foldr } f z x s) \text { ? } \\
& \text { foldr :: (tx -> tz -> tz) -> tz -> (List tx) -> tz } \\
& \text { filter p [] } \\
& \text { filter } p \text { (x:xs) }
\end{aligned}
$$

Using maps and folds

1. Write sum in terms of fold
```
sum = foldr plus 0
```

2. Write split using foldr split :: (List Token) -> ((List String),(List Int))
```
split = foldr f ([],[])
f (Word w) (ws,ns) = ((w:ws),ns)
f (Number n) (ws,ns) = (ws,(n:ns))
```

3. What does function fy do?
fy xys = map second xys
second (x, y) $=\mathrm{y}$
fy :: (List (t1, t2)) -> (List t2)

Flattening a List of Lists

```
append :: (List t) -> (List t) -> (List t)
append [] ys = ys
append (x:xs) ys = (x:(append xs ys))
```

```
flatten :: (List (List t)) -> (List t)
```

flatten :: (List (List t)) -> (List t)
flatten [] = []
flatten [] = []
flatten (xs:xss) = append xs (flatten xss)

```
flatten (xs:xss) = append xs (flatten xss)
```


Zipping two lists

```
zipWith :: (tx -> ty -> tz) ->
    (List tx) ->
    (List ty) -> (List tz)
```

zipWith f [] []
zipWith f (x:xs)
(y:ys) $=[]$
((f x y):(zipWith f xs ys))

What does f do?
f xs = zipWith append xs (init ([]:xs))
Suppose $x s$ is:
$\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
[] , $x_{0}, x_{1}, \ldots, x_{n-1}$

Arithmetic Sequences: Special Lists

$$
\begin{aligned}
& {[1 \ldots 4] \equiv[1,2,3,4]} \\
& {[1,3 \ldots 10] \equiv \quad[1,3,5,7,9]} \\
& {[5,4 \ldots 1] \equiv[5,4,3,2,1]} \\
& {[5,5 \ldots 10] \equiv \quad[5,5,5, \ldots] \quad ?} \\
& {[5 \ldots] \quad[5,6,7, \ldots] \text { ? }}
\end{aligned}
$$

Infinite Data Structures

1. ints_from $\mathbf{i}=\mathrm{i}:($ ints_from (i+1))
nth $n(x: x s)=$ if $n=1$ then x else nth (n - 1) xs nth 50 (ints_from 1) --> 50 ?
2. ones $=1$:ones
nth 50 ones $-->1$?
3. $x s=\operatorname{map} f(a: x s)$

$$
\text { nth } 10 \text { xs }-->\quad f(f \ldots(f a) \ldots)) \text { ? }
$$

These are well defined programs in Haskell. In pH you will get an answer but the program may not terminate.

Primes: The Sieve of Eratosthenes

```
primes = sieve [2..]
sieve (x:xs) = x:(sieve (filter (p x) xs))
p x y = ( y mod x) = 0
    nth 100 primes
```


List Comprehensions

List Comprehensions a convenient syntax

[e | gen, gen, ...]
Examples
[f x | x <- xs]
means map f xs
[x | x <- xs, ($\mathrm{p} x$)]
means filter p xs
[f x y | x <- xs, y <- ys]
means the list
[(f x1 y1),...(f x1 yn),
(f x2 y1),......(f xm yn)]
which is defined by
flatten (map (x -> (map (\y -> e) ys) xs))

Three-Partitions

Generate a list containing all three-partitions ($n c 1, n c 2, n c 3$) of a number m, such that

- $n c 1 \leq n c 2 \leq n c 3$
- $\mathrm{nc} 1+\mathrm{nc} 2+\mathrm{nc} 3=\mathrm{m}$
three_partitions m =
[(nc1, nc2, nc3) | nc1 <- [0..m], $\mathrm{nc} 2<-[0 . . \mathrm{m}]$,
nc3 <- [0..m],
nc1+nc2+nc3 == m,
nc1 <= nc2,
nc2 <= nc3]

Efficient Three-Partitions

three_partitions m =
[(nc1, nc2, nc3) | nc1 <- [0..floor(m/3)],
nc2 <- [nc1..floor ((m-nc1)/2)],?
nc3 $=\mathrm{m}-\mathrm{nc} 1-\mathrm{nc} 2 \mathrm{]}$

The Power of List Comprehensions

[(i,j) | i <- [1..m], j <- [1..n]]
using map

$$
\begin{array}{ll}
\text { point } i \operatorname{j} & =(i, j) \\
\text { points } i & =\operatorname{map}(\text { point } i)[1 . . \mathrm{n}] \\
\text { all_points } & =\text { map points }[1 . . \mathrm{m}]
\end{array}
$$

Is this correct?

No, we still need to flatten the list of lists.

Desugaring!

- Most high-level languages have constructs whose meaning is difficult to express precisely in a direct way
- Compilers often translate ("desugar") high-level constructs into a simpler language
- Two examples:
- List comprehensions: eliminate List compressions usings maps etc.
- Pattern Matching: eliminate complex pattern matching using simple case-expressions

List Comprehensions: Abstract Syntax
 [e \| Q] where e is an expression and \mathbf{Q} is a list of generators and predicates

There are three cases on \mathbf{Q}

1. First element of Q is a generator

$$
\left[\mathrm{e} \mid \mathrm{x}<-\mathrm{L}, \mathrm{Q}^{\prime}\right]
$$

2. First element of Q is a predicate
[e | B, Q']
3. Q is empty
[e |]

List Comprehensions Semantics

Rule $1.1 \quad[\mathrm{e} \mid \mathrm{x}<-[], \mathrm{Q}] \Rightarrow[]$
Rule $1.2 \quad\left[\mathrm{e} \mid \mathrm{x}<-\left(\mathrm{e}_{\mathrm{x}}\right.\right.$: $\left.\left.\mathrm{e}_{\mathrm{xs}}\right), \mathrm{Q}\right] \quad \Rightarrow$
(let $\mathrm{x}=\mathrm{e}_{\mathrm{x}}$ in $\left.[\mathrm{e} \mid \mathrm{Q}]\right)$ ++
[e | x <- $\left.e_{x s}, ~ Q\right]$
Rule 2.1 [e | False, Q] $\Rightarrow[]$
Rule 2.2 [e | True , Q] $\Rightarrow[\mathrm{e} \mid \mathrm{Q}]$
Rule 3 [e |] $\quad \Rightarrow$ e : []

Desugering: First Attempt

> TE[[[e |] $]$] e :[]
> $\operatorname{TE[[[~e~|~B,~Q~}]]]=$
> if B then $\mathrm{TE}[[[\mathrm{e} \mid \mathrm{Q}]]]$ else []

TE[[[e | x <- L, Q]]] =
case L of

t:ts -> (let $x=t$ in $T E[[[$ e | Qu]]) $++\quad T E\left[\left[\left[\begin{array}{llll}\text { e } & \text { x } & \text { ts, } \\ \text { d }\end{array}\right]\right]\right]$

Will unfold infinitely!
Need to be more systematic.

Not
structural induction

Eliminating Generators

[e | x <- xs] \Rightarrow map ($\mathrm{x}-\mathrm{>}$ e) xs
[e | x <- xs, y <- ys] \Rightarrow concat (map (\x-> map ($\mathrm{y}->\mathrm{e}$) ys) xs)
where concat flattens a list:
concat [] = []
concat (xs:xss) = xs ++ (concat xss)
[e | x <- xs, y <- ys, z <- zs] \Rightarrow concat (map (\x-> map ($\backslash \mathrm{y}->$ map ($\backslash z->$ e) $z s$) ys) $x s$)

A More General Solution

- Flatten the list after each map.
- Start the process by turning the expression into a one element list

```
[ e | x <- xs] \(\Rightarrow\)
        concat (map (\x-> [e]) xs)
[ e | x <- xs, y <- ys] \(\Rightarrow\)
        concat (map (\x->
        concat (map (\y-> [e]) ys)) xs )
[ e|x \(<-x s, y<-y s, z<-z s] \Rightarrow\)
        concat (map (\x->
        concat (map (\y->
        concat (map (\z-> [e]) zs) ys) xs)
```


Eliminate the intermediate list

[e | x <- xs] \Rightarrow concat (map ($\mathrm{x}->$ [e]) xs)
Notice map creates a list which is immediately consumed by concat. This intermediate list is avoided by concatMap

```
concatMap f [] = []
concatMap f (x:xs) = (f x) ++ (concatMap f xs)
```

 [e | x <- xs] \(\Rightarrow\) concatMap (\(\backslash x->\) [e]) xs

concatMap (\x->
concatMap (\y-> [e]) ys) xs
[e | x <- xs, y <- ys, z <- zs] \Rightarrow
concatMap (\x->
concatMap (\y->
concatMap (\z-> [e]) zs) ys) xs

List Comprehensions with Predicates

$$
\begin{aligned}
& {[\mathrm{e} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p}]} \\
& \Rightarrow \text { (map (\x-> e) (filter (\x-> p) xs) } \\
& \Rightarrow \text { concatMap (\x-> if p then [e] else []) xs } \\
& {\left[\begin{array}{l}
\mathrm{e} \mid x<-\mathrm{xs}, \mathrm{p}, \mathrm{y}<-\mathrm{ys}] \\
\Rightarrow \operatorname{concatMap~(\backslash x->~ifp~then~} \\
\\
\text { concatMap (\y-> [e]) ys) else []) xs }
\end{array}\right.}
\end{aligned}
$$

List Comprehensions:

First Functional Implementation- Wadler

$$
\begin{aligned}
& \text { TE[[[e | x <- L, Q }] \text {]] = } \\
& \text { concatMap (\x-> TE[[[e | Q]]]) L } \\
& \operatorname{TE}\left[\left[\left[\text { e | B, }_{\text {Q }}\right.\right.\right. \\
& \text { TE[[[e | }]]]=\text { e :[] }
\end{aligned}
$$

Can we avoid concatenation altogether?
Idea: Build the list from right-to-left
TQ[[[e | Q] ++ L]]
where \mathbf{L} has already been translated.

Building the output from right-to-left
 [e | x <- xs] \Rightarrow
 concat (map ($\backslash x->$ e) xs)
 versus

f (x :xs') = e: (f xs') in
(f xs)

$$
\begin{aligned}
& \text { Building the output from right-to-left } \\
& \text { [ex <- xs, y <- yo] } \Rightarrow \\
& \text { concat (map (\x-> map (\y-> e) es) xs) } \\
& \text { versus }
\end{aligned}
$$

$$
\begin{aligned}
& \text { f (x:xs') = } \\
& \text { let } \mathrm{g}\left[\mathrm{l}=\mathrm{f} \mathrm{xs}^{\prime}\right. \\
& \text { in } \quad \mathrm{g}\left(\mathrm{y}: \mathrm{ys} \mathbf{\prime}^{\prime}\right)=\mathrm{e}:\left(\mathrm{g} y s^{\prime}\right) \\
& \text { (g es) } \\
& \text { in } \\
& \text { (f xs) }
\end{aligned}
$$

List Comprehensions:

Second Functional Implementation-Wadler

| ```TE[[[e \| Q]]] = TQ[[[e | Q]]][[[]]] TQ[[[e | x <- L L, Q]]][[L]]= let f [] = L f (x:xs) = TQ[[[e | Q]]] [[(f xs)]] in (f L L TQ[[[e | B, Q \]] [[L]] = if B then TQ[[[e | Q]]] [[L]] else L TQ[[[e |]]][[L]] = e : L``` | |
| :---: | :---: |
| | |
| | |
| | |

This translation is efficient because it never flattens. The list is built right-to-left, consumed left-to-right.

The Correctness Issue

How do we decide if a translation is correct?

- if it produces the same answer as some reference translation, or
- if it obeys some other high-level laws

In the case of comprehensions one may want to prove that a translation satisfies the comprehension rewrite rules.

