
1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L09-1October 5, 2006 http://www.csg.csail.mit.edu/6.827

Compiling Pattern Matching
and List Comprehensions

October 5, 2006

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-2

Desugaring!
• Most high-level languages have constructs whose

meaning is difficult to express precisely in a
direct way

• Compilers often translate (“desugar”) high-level
constructs into a simpler language

• Two examples:

– List comprehensions: eliminate List
compressions usings maps etc.

– Pattern Matching: eliminate complex pattern
matching using simple case-expressions

2

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-3

Pattern Matching

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-4

Desugaring Function Definitions

Function def ⇒ λ-expression + Case

map f [] = []
map f (x:xs) = (f x):(map f xs)

⇒

We compile the pattern matching using a tuple.

map = (\t1 t2 ->
case (t1,t2) of

(f, []) -> []
(f,(x:xs)) -> (f x):(map f xs)

3

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-5

Complex to Simple Patterns

last [] = e1
last [x] = e2
last (x1:(x2:xs)) = e3

⇒
last = \t ->

case t of
[] -> e1
(t1:t2) ->

case t2 of
[] ->

(t3:t4) ->

let x = t1
in e2
let x1 = t1

x2 = t3
xs = t4

in e3

Turn every case
into a primitive
case

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-6

Pattern Matching and Strictness
Haskell uses top-to-bottom, left-to-right order in
pattern matching.

case (e1,e2) of
([] , y) -> eb1
((x:xs), z) -> eb2

Strictness issue: Should we evaluate e2?

case e1 of
[] -> let y = e2 in eb1
(x:xs) -> let z = e2 in eb2

If not then the above expression is the same as

4

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-7

Order of Evaluation and Strictness

Is there a minimum possible evaluation of an
expression for pattern matching?

case (x,y,z) of
(x,y,1) -> e1
(1,y,0) -> e2
(0,1,0) -> e3

Be careful about ordering

What about ...

We must evaluate z
if z is 0 then we must evaluate x

if x is 0 then we must evaluate y

Is this what top-to-bottom, left-to-right
pattern matching will do?

case (x,y,z) of
(x,y,1) -> e1
(0,1,0) -> e3
(1,y,0) -> e2

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-8

Pattern Matching:
Abstract Syntax & Semantics

Let us represent a case as (case e of C)
where C is

C = P -> e | (P -> e) , C

P = x | CN0 | CNk(P1, …,Pk)

The rewriting rules for a case may be stated as
follows:
(case e of P -> e1, C)

⇒ e1 if match(P,e)
⇒ if ~match(P,e)

(case e of P -> e1)
⇒ e1 if match(P,e)
⇒ if ~match(P,e)

(case e of C)

error

Is it top
to
bottom?

5

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-9

The match Function

match[[x, t]] = True

match[[CN0, t]] = CN0 == tag(t)

match[[CNk(P1, …,Pk), t]] =
if tag(t) /= CNk
then False
else if not match[[P1, proj1(t)]]

then False
else ...

if not match[[Pk, projk(t)]]
then False
else True

P = x | CN0 | CNk(P1, …,Pk)

Is it
left to
right?

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-10

Pattern Matching

TE[[(case e of C)]] =
(let t = e in TC[[t, C]])

TC[[t, (P -> e)]] =

TC[[t, ((P -> e),C)]] =

if match[[P, t]]
then (let bind[[P, t]] in e)
else error “match failure”

if match[[P, t]]
then (let bind[[P, t]] in e)
else TC[[t, C]]

6

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-11

Pattern Matching: bind Function

bind[[x, t]] = x = t

bind[[CN0 , t]] = ε

bind[[CNk(P1, …,Pk) , t]] =
bind[[P1, proj1(t)]] ;
.
.
.
bind[[Pk, projk(t)]]

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-12

Refutable vs Irrefutable Patterns
Patterns are used in binding for destructuring an
expression---but what if a pattern fails to match?

let (x1, x2) = e1
x : xs = e2
y1: y2 : ys = e3

in
e

what if e2 evaluates to [] ?
e3 to a one-element list ?

Should we disallow refutable patterns in bindings?
Too inconvenient!

Turn each binding into a case expression

7

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-13

Compiling List Comprehensions

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-14

List Comprehensions:
Abstract Syntax
[e | Q] where e is an expression and Q is a list of
generators and predicates

There are three cases on Q

1. First element of Q is a generator
[e | x <- L, Q’]

2. First element of Q is a predicate
[e | B, Q’]

3. Q is empty
[e |]

8

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-15

List Comprehensions Semantics

Rule 1.1 [e | x <- [], Q] ⇒

Rule 1.2 [e | x <- (ex : exs), Q] ⇒

Rule 2.1 [e | False, Q] ⇒

Rule 2.2 [e | True , Q] ⇒

Rule 3 [e |] ⇒

[]

(let x = ex in [e | Q]) ++
[e | x <- exs, Q]

e : []

[e | Q]

[]

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-16

List Comprehensions:
First Functional Implementation- Wadler

TE[[[e | x <- L, Q]]] =
concatMap (\x-> TE[[[e | Q]]]) L

TE[[[e | B, Q]]] =
if B then TE[[[e | Q]]] else []

TE[[[e |]]] = e :[]

Can we avoid concatenation altogether?

Idea: Build the list from right-to-left

TQ[[[e | Q] ++ L]]

where L has already been translated.

9

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-17

Building the output from right-to-left

[e | x <- xs, y <- ys]

...

(xn,y1) (xn,ym)(xn-1,ym)(xn-1,ym-1)

...

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-18

Building the output from right-to-left
[e | x <- xs] ⇒ concatMap (\x-> [e]) xs

[e | x <- xs] ⇒
let f [] = []

f (x:xs’) = e : (f xs’)
in

(f xs)

versus

Similar but no need for concatenation

10

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-19

Building the output from right-to-left
[e | x <- xs, y <- ys] ⇒

concatMap (\x-> concatMap (\y-> e) ys) xs)

[e | x <- xs, y <- ys] ⇒
let f [] = []

f (x:xs’) =
let g [] = f xs’

g (y:ys’) = e :(g ys’)
in

(g ys)
in

(f xs)

versus

Still hogging lot of stack

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-20

List Comprehensions:
Second Functional Implementation-Wadler

TE[[[e | Q]]] = TQ[[[e | Q]]] [[[]]]

TQ[[[e | x <- L1, Q]]] [[L]] =
let f [] = L

f (x:xs) = TQ[[[e | Q]]] [[(f xs)]]
in

(f L1)

TQ[[[e | B, Q]]] [[L]] =
if B then TQ[[[e | Q]]] [[L]] else L

TQ[[[e |]]] [[L]] = e : L

This translation is efficient because it never flattens.
The list is built right-to-left, consumed left-to-right.

11

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-21

The Correctness Issue

How do we decide if a translation is correct?

– if it produces the same answer as some
reference translation, or

– if it obeys some other high-level laws

In the case of comprehensions one may want
to prove that a translation satisfies the
comprehension rewrite rules.

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-22

More efficient and parallelizable
translations in pH using
I-Structures

The syntax shown here is for pH

I-Structures are write-once type of data
structures

12

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-23

data IList t = INil
| ICons {hd ::t, tl:: .(IList t)}

Allocation
x = ICons {hd = 5}

Assignment
tl x := e

The single assignment restriction.
If violated the program will blow up.

Selection
case xs of

INil -> ...
ICons h t -> ...

we can also write ICons {hd=h, tl=t} -> ...

I-lists

I-Structure fieldx
a hole

5 x

5
e

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-24

Open List Operations

A pair of I-list pointers for the header and the
trailer cells.

closing an open list

joining two open lists

...
1 2 10

...
11 12 n

...
1 2 10

...
12 n11

...

1 10
...

11 n

13

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-25

Open List Operation Definitions

type open_list t = ((IList t), (IList t))

nil_ol = (INil, INil)

close (hr,tr) =
let

case hr of
INil -> ()
ICons _ _ -> {tl tr := INil}

in cnv_Ilist_to_list hr

join (hr1,tr1) (hr2,tr2) =
case hr1 of

INil ->
ICons _ _ -> let tl tr1 := hr2

in (hr1,tr2)

(hr2,tr2)

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-26

Map Using Open Lists

• Inefficient because it is not tail recursive!
• A tail recursive version can be written using open lists:

map f xs = close (open_map f xs)
where

map f [] = []
map f (x:xs) = (f x):(map f xs)

open_map f [] = (INil, INil)
open_map f (x:xs) =

let tr = ICons {hd=(f x)}
last = for x’ <- xs do

finally tr
in (tr,last)

At each stage
a side-effect to
the "last" cell
is caused.

tr’ = ICons {hd=(f x’)}
tl tr := tr'
next tr = tr’

14

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-27

Implementing List Comprehensions

• Inefficient even with tail recursive map because
of too much consing

[e | x <- xs, y <- ys] ⇒
concatMap (\x->
concatMap (\y-> [e]) ys) xs

Functional
solution 1

[e | x <- xs, y <- ys] ⇒
let f [] = []

f (x:xs’) =
let g [] = f xs’

g (y:ys’) = e:(g ys’)
in (g ys)

in (f xs)

Functional
solution 2

• Builds the list from right-to-left and avoids
excessive consing but is sequential and hogs
stack space

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-28

Implementing List Comprehensions
Using Open Lists

let
zs = nil_ol

in
for x <- xs do

z' = open_map (\y-> e) ys
next zs = join zs z'

finally zs

[e | x <- xs, y <- ys]

1. Make n open lists, one for each x in xs
2. Join these lists together

• This solution eliminates all copying and
preserves parallelism.

