Compiling Pattern Matching
and List Comprehensions

Arvind
Computer Science and Artificial Intelligence Laboratory
M.L.T.

October 5, 2006

October 5, 2006 http://www.csg.csail.mit.edu/6.827 L09-1

Desugaring!

< Most high-level languages have constructs whose
meaning is difficult to express precisely in a
direct way

« Compilers often translate (“desugar”) high-level
constructs into a simpler language

e Two examples:

— List comprehensions: eliminate List
compressions usings maps etc.

— Pattern Matching: eliminate complex pattern
matching using simple case-expressions

| October 5. 2006 http://www.csqg.csail.mit.edu/6.827 L09-2

Pattern Matching

| October 5, 2006 http:.//www.csda.csail. mit.edu/6.827 L09-3

Desugaring Function Definitions

Function def = A-expression + Case

map f [] =0
map F (x:xs) = (F xX):(map T xs)

=

map = (\tl t2 ->
case (tl1,t2) of
(f, D -> [1
(F,(x:x8)) -> (f xX):(map T xs)

We compile the pattern matching using a tuple.

| October 5. 2006 http://www.csqg.csail.mit.edu/6.827 L09-4

Complex to Simple Patterns

last [] = el |Turn every case
last [x] = e2 into a primitive
last (x1:(x2:xs)) = e3 |case
=
last = \t ->
case t of
[1 -> el
(t1:t2) ->
case t2 of
1 -> let x = tl
in e2
(t3:t4) -> let x1 = t1
X2 = 13
Xs = t4
in e3
| October 5, 2006 http://www.csa.csail.mit.edu/6.827 L09-5

Pattern Matching and Strictness

Haskell uses top-to-bottom, left-to-right order in
pattern matching.

case (el,e2) of

(r] . y) -> ebl
((xX:xs), z) -> eb2

Strictness issue: Should we evaluate e2?
If not then the above expression is the same as

case el of

[1 -> let y
(x:xs) -> let z

e2 in ebl
e2 in eb2

| October 5. 2006 http://www.csqg.csail.mit.edu/6.827 L09-6

Order of Evaluation and Strictness

Is there a minimum possible evaluation of an
expression for pattern matching?

case (Xx,y,z) of What about ...
(x,y,1) —=> el case (X,y,z) of
(1,y,0) -> e2 (x,y,1) -> el
(0,1,0) -> e3 (0,1,0) -> e3
(1,y,0) > e2

We must evaluate z
if z is O then we must evaluate x
if X is O then we must evaluate y

Is this what top-to-bottom, left-to-right
pattern matching will do?

Be careful about ordering

| October 5, 2006 http:.//www.csda.csail. mit.edu/6.827 L09-7

Pattern Matching:

Abstract Syntax & Semantics

Let us represent a case as (case e of C)
where C is

C=P->e | (P->¢e),C

P=x1CNy | CN(Py, -.,P)

The rewriting rules for a case may be stated as

follows:
(case e of P -> el, O)
= el if match(P,e)
—| (case e of () if ~match(P,e
(case e of P -> el) Is it top
- el if match(P,e) | mwom?
=/ error if ~match(P,e

| October 5. 2006 http://www.csqg.csail.mit.edu/6.827 L09-8

The match Function
P=x1]CNg | CNe(Pys sP
match[[x, t]] =True

match[[CN,, t]] =CN, == tag(t)

match[[CN.(P,, ..,P), t]]=
if tag(t) /= CN,

then False

s it else 1T not match[[P,, proj,(t)]]

left to then False

right? else L.
ifT not match[[P,, proj,(t)]]
then False
else True

| October 5, 2006 http://www.csa.csail.mit.edu/6.827 L09-9

Pattern Matching

TE[[(case e of C)]] =
(let t = e in TC[[t, C]D

TC[[t, (P —> e)]] =
it match[[P, t]]
then (let bind[[P, t]] in €e)
else error “match failure”

TC[[t, ((P -> ¢),0)]] =
1T match[[P, t]]
then (let bind[[P, t]] In €e)
else TC[[t, C]]

L09-10

| October 5, 2006 http://www.csq.csail.mit.edu/6.827

Pattern Matching: bind Function

bind[[x, t]] =x =t
bind[[CN, , t]] = ¢

bind[[CN,(P;, ..,P) , t]]=
bind[[P,, proj,(t)]l];

bind[[P, proj.(t)]

| October 5, 2006

http://www.csa.csail.mit.edu/6.827 L09-11

Refutable vs Irrefutable Patterns

Patterns are used in binding for destructuring an
expression---but what if a pattern fails to match?

let (X1, x2)

= el
X I XS = e2
yl: y2 - ys = e3
in
e

what if e2 evaluates to [] ?
e3 to a one-element list ?

Should we disallow refutable patterns in bindings?
Too inconvenient!

Turn each binding into a case expression

| October 5. 2006

http://www.csq.csail.mit.edu/6.827 L09-12

Compiling List Comprehensions

| October 5. 2006 http://www.csa.csail.mit.edu/6.827 L09-13

List Comprehensions:
Abstract Syntax

[e | Q] where e is an expression and Q is a list of
generators and predicates

There are three cases on Q

1. First element of Q is a generator

[el x<-L,Q 1]

2. First element of Q is a predicate

LelB, Q1

3. Q is empty
Lell

| October 5. 2006 http://www.csqg.csail.mit.edu/6.827 L09-14

List Comprehensions Semantics

Rulel.l [e]lx<-1[].Q01 = @

Rulel1.2 T[e | x<-(eg:e,.),01 =
(let x=¢, IN[e] Q1 ++
[eIX<_eXS1Q]

Rule2.1 [e | False, Q] = [
Rule 2.2 [e] True , Q1] = [e] Q1

Rule 3 [Lel] = e : [l

| October 5. 2006 http://www.csa.csail.mit.edu/6.827 L09-15

List Comprehensions:
First Functional Implementation- Wadler

TE[[L e | x <- L, Qlll=
concatMap (\x-> TE[[[e | Q1ID L

TE[[L e 1 B, Q1] =
it B then TE[[[e | Q]]] else []

TE[[L e | 1]] =e [

Can we avoid concatenation altogether?

Idea: Build the list from right-to-left
TQI[[e | Q1 ++ L]

where L has already been translated.

| October 5. 2006 http://www.csqg.csail.mit.edu/6.827 L09-16

Building the output from right-to-left

[e] x<-Xs,y<-ys]

K-t Ym-1> XKn1:Ym) (XnsY1) X Ym)
7 A T HT+—1 11

| October 5. 2006 http://www.csa.csail.mit.edu/6.827 L09-17

Building the output from right-to-left

[e | X <- xs] = concatMap (\x-> [e]) xs

Versus

[e] X <- xs] =

let T[] =0
) T (x:xs”) =e - (F xs7)
in

(f xs)

Similar but no need for concatenation

| October 5. 2006 http://www.csqg.csail.mit.edu/6.827 L09-18

Building the output from right-to-left

[e] X <- Xs, ¥y <-ys] =
concatMap (\x-> concatMap (\y-> e) ys) Xs)

vVersus

[e] x<-xXxs, y<-ys] =

let T [] = [1
f (x:xs”’) =
let g [] = f xs”’
) g (y:ys’) = e (g ys’)
in
] (9 ys)
in
(f xs)

Still hogging lot of stack

| October 5. 2006 http://www.csa.csail.mit.edu/6.827 L09-19

List Comprehensions:
Second Functional Implementation-Wadler

TE[[[e | Q1]] = TQ[[[e | Q111 [[L1]]
TQ[[[e | x <= L,, QIII [[LII=
let T [] =L
. T (xzxs) = TOQ[[[e | QlI] [[(F xs)]]
(fr L)

TQ[[[e | B, QI [[L]] =
1T B then TQ[[[e | Ql1] [[L]] else L

TRIIe I TN =e:-L

This translation is efficient because it never flattens.
The list is built right-to-left, consumed left-to-right.

| October 5. 2006 http://www.csqg.csail.mit.edu/6.827 L09-20

The Correctness Issue

How do we decide if a translation is correct?

— if it produces the same answer as some
reference translation, or

— if it obeys some other high-level laws

In the case of comprehensions one may want
to prove that a translation satisfies the

comprehension rewrite rules.

| October 5. 2006 http://www.csa.csail.mit.edu/6.827 L09-21

More efficient and parallelizable
translations in pH using
I-Structures

I-Structures are write-once type of data
structures

The syntax shown here is for pH

| October 5, 2006 http://www.csq.csail.mit.edu/6.827

L09-22

11

I-lists

data IList t = INil
| ICons {hd :-:t, tl:: _(IList t)}

Allocation X I-Structure field

x = I1Cons {hd = 5} | a hole
5

Assignment X] e
tl x := e |

The single assignment restriction.
If violated the program will blow up.

Selection

case xs of
INTI - .
ICons h t -> ...

we can also write ICons {hd=h, tl=t} -> __.

| October 5. 2006 http://www.csa.csail.mit.edu/6.827 L09-23

Open List Operations

A pair of I-list pointers for the header and the
trailer cells.

joining two open lists

(-~ (-
T

closing an open list

| October 5. 2006 http://www.csqg.csail.mit.edu/6.827 L09-24

12

Open List Operation Definitions

type open_list t = ((IList t), (IList t))
nil_ol = (INil, INil)

close (hr,tr) =

let
case hr of
INiIl -=> O
ICons _ _ —> {tl tr := INil}

in cnv_llist to list hr

join (hri,trl) (hr2,tr2) =
case hrl of
INil —>| (hr2,tr2)
ICons _ _ ->|let tl trl := hr2
in (hrl,tr2)

| October 5. 2006 http://www.csa.csail.mit.edu/6.827 L09-25

Map Using Open Lists

map T 1
map T (x:xs)

[l
(f xX):z(map T xs)

« Inefficient because it is not tail recursive!

= A tail recursive version can be written using open lists:
map T xs = close (open_map f xs)
where

open_map T [] = (INiI, INiD)
open_map f (X:xs) =

let tr = ICons {hd=(f x)}

last = for x” <- xs do

At each stage tr’ = ICons {hd=(f x*)}
a side-effect to tl tr -= tr-
the "last" cell next tr = tr’
is caused.
finally tr
in (tr,last)
| October 5, 2006 http://www.csqg.csail.mit.edu/6.827 L09-26

13

Implementing List Comprehensions

Functional
solution 1

Functional
solution 2

concatMap (\x->

concatMap (\y-> [e]) ys) xs

[e] X <- Xxs, ¥y <-ys] =

Inefficient even with tail recursive map because
of too much consing

Lel x<-xs,y<-ys]

let T []
f (x:xs7)
let g [1

g (y:ys?)

. in (g ys)
in (F xs)

L1

=

f xs”
e:(g ys’)

« Builds the list from right-to-left and avoids
excessive consing but is sequential and hogs
stack space

| October 5, 2006

http://www.csa.csail. mit.edu/6.827

Implementing List Comprehensions
Using Open Lists

| October 5, 2006

[Lel x<-xs,y<-ys]

1. Make n open lists, one for each x in xs
2. Join these lists together

let

in

zs = nil_ol

for x <- xs do
-

= open_map (\y-> e) ys

next zs = join zs z°©

finally zs

http://www.csq.csail.mit.edu/6.827

= This solution eliminates all copying and
preserves parallelism.

14

