
1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L10-1October 12, 2006 http://www.csg.csail.mit.edu/6.827

Arrays and I-structures

October 12, 2006

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-2

Arrays

Cache for function values on a regular subdomain

x = mkArray (1, n) f

(f i)

means x!i = (f i)
1 < i < n

1 n

Selection: x!i returns the value of the ith slot

Bounds: (bounds x) returns the tuple containing
the bounds

2

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-3

Efficiency is the Motivation
for Arrays

(f i) is computed once and stored

x!i is simply a fetch of a precomputed value
and should take constant time

1 n

(f i)

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-4

Index Type Class
Arrays can be indexed by any type that can be
regarded as having a contiguous enumerable
range

range: Returns the list of index elements between a
lower and an upper bound

index : Given a range and an index, it returns an
integer specifying the position of the index in the
range based on 0

inRange : Tests if an index is in the range

class Ix a where
range :: (a,a) -> [a]
index :: (a,a) -> a -> Int
inRange :: (a,a) -> a -> Bool

3

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-5

Examples of Index Type
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

An index function may be defined as follows:

index (Sun,Sat) Wed = 3
index (Sun,Sat) Sat = 6

...

A two dimentional space may be indexed as followed:

index ((li,lj), (ui,uj)) (i,j) =
(i-li)*((uj-lj)+1) + j - lj

This indexing function enumerates the space in the
row major order

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-6

Array: An Abstract Datatype
module Array (Array, mkArray, (!), bounds)

where

infix 9 (!)

data (Ix a) => Array a t
mkArray :: (Ix a) => (a,a) -> (a -> t) ->

(Array a t)
(!) :: (Ix a) => (Array a t) -> a -> t
bounds :: (Ix a) => (Array a t) -> (a,a)

Thus,
type ArrayI t =
type MatrixI t =

Array Int t
Array (Int,Int) t

4

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-7

Higher Dimensional Arrays

x = mkArray ((l1,l2),(u1,u2)) f

means x!(i,j) = f (i,j) l1 < i < u1
l2 < j < u2

Type
x :: (Array (Int,Int) t)

Assuming
f :: (Int,Int) -> t

mkArray will work for higher dimensional matrices
as well.

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-8

Array of Arrays

(Array Int (Array Int t)) ≡
(Array (Int,Int) t)

This allows flexibility in the implementation of
higher dimensional arrays.

5

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-9

Matrices

add (i,j) = i + j

mkArray ((1,1),(n,n)) add ?

i

j

i+j

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-10

Transpose

transpose a =
let

((l1,l2),(u1,u2)) = bounds a

f (i,j) = ?

in
mkArray f

a!(j,i)

((l2,l1),(u2,u1))

6

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-11

The Wavefront Example

x = mkArray ((1,1),(n,n)) (f x)

f x (i, j) = if i == 1 then 1
else if j == l then 1

else x!(i-1,j) + x!(i,j-1)

xi,j = xi-1,j + xi,j-1

1 1 1 1 1 1 1 1
1
1
1
1
1
1
1

fix
point

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-12

Compute the least fix point.

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 1 1 1 1
1
1
1
1
1
1
1

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

2 3
3

4
6

4

5
10

5
10

x = mkArray ((1,1),(n,n)) (f x)

f x (i, j) = if i == 1 then 1
else if j == l then 1

else x!(i-1,j) + x!(i,j-1)

W
a
v
e
-
f
r
o
n
t

p
a
r
a
l
l
e
l
i
s
m

7

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-13

Array Comprehension

A special function to turn a list of (index,value)
pairs into an array

array :: (Ix a) => (a,a) -> [(a,t)] -> (Array a t)
array ebound

([(ie1,e1) | gen-pred, ..]
++ [(ie2,e2) | gen-pred, ..] ++ …)

Thus,

mkArray (l,u) f =
 array (l,u) [(j,(f j)) | j <- range(l,u)]

duplicates?

List comprehensions and function array provide
flexibility in constructing arrays, and the compiler
can implement them efficiently

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-14

Array Comprehension: Wavefront

x = array ((1,1),(n,n))
([((1,1), 1)]

++ [((i,1), 1) |]
++ [((1,j), 1) |]
++ [((i,j), x!(i-1,j) + x!(i,j-1))

|
])

x[i,j]= x[i-1,j] + x[i,j-1]

1 1 1 1 1 1 1 1
1
1
1
1
1
1
1

i <- [2..n]
j <- [2..n]

i <- [2..n],
j <- [2..n]

8

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-15

Duplicates

• Haskell Semantics:
– Enumerate the whole index range and return

bottom if any duplicate indices are found

• pH Semantics:
– Only the duplicated elements are bottom, no the

whole array

• Haskell semantics are motivated by lazy
evaluation and awful for parallel
implementation; pH semantics are
preferable if all the elements of the array
are going to be computed

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-16

Another Issue: Computed Indices

find x i =

y = mkArray (1,n) (find x)

2 5 6 1 3 4 x

y
⇓Inverse permutation

y ! (x ! i) = i 1 2 34 5 6

y = array (1,n) [(,)| i <- [1..n]]

How many comparisons? Can we do better?

x!i i

let % find j such that x!j = i
step j = if x!j== i then j

else step j+1
in

step 1

9

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-17

In functional data structures, a single construct
specifies:

- The shape of the data structure
- The value of its components

These two aspects are specified separately using
I-structures

efficiency
parallelism

I-structures preserve determinacy but are not
functional !

I-structures

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-18

I-Arrays

- Allocation expression

iArray (1,n) []

- Assignment

iAStore a 2 5
or a!2 := 5

provided the previous content was ⊥
"The single assignment restriction.”

- Selection expression

a!2 5
(⊥ means empty)

. . .⊥ ⊥⊥
1 2 . . . n

. . .⊥ ⊥5
1 2 . . . n

10

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-19

Computed Indices Using I-structures

let
y = iArray (1,n) []
_ = for i <- [1..n] do

_ = iAStore y (x!i) i
finally () % unit data type

in
y

What if x contains a duplicate ?

Inverse permutation
y ! (x ! i) = i

2 5 6 1 3 4 x

y
⇓

1 2 34 5 6

More
in a
moment

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-20

Multiple-Store Error

Multiple assignments to an iArray slot cause a
multiple store error

A program with exposed store error is
suppose to blow up!

Program --> T

The Top represents a contradiction

11

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-21

The Unit Type
data () = ()

means we cannot do much with an object of the
unit type. However, it does allow us to drop ‘_ =’

let
y = iArray (1,n) []
for i <- [1..n] do

iAStore y (x!i) i
finally () -- unit data type

in
y

For better syntax replace
iAStore y (x!i) i by y!(x!i) := i

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-22

I-Cell
data ICell a = ICell {contents :: . a}

I-Structure fieldConstructor
ICell :: a -> ICell a

ICell e or ICell {contents = e}

or create an empty cell and fill it

ic = ICell {}
contents ic := e

Selector
contents ic or
case ic of

ICell x -> ... x ...

12

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-23

An Array of ICells
Example: Rearrange an array such that the negative
numbers precede the positive numbers

2 8 -3 14 2 7 -5

-3 -5 2 8 14 2 7
Functional solutions are not efficient

let y = array (1,n) [(i,ICell {})| i<-[1..n]]
(l,r) = (0,n+1)
final_r = for j <- [1..n] do

(l’,r’,k) =

contents (y!k) := x!j
next l = l’
next r = r’
finally r

in (y, final_r)

if (x!j >= 0)
then (l,r-1,r-1)
else (l+1,r,l+1)

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-24

Type Issues
In the previous example

x :: Array Int
y :: Array (Icell Int)

1. IArray data type eliminates this extra level of
indirection

2. The type of a functional array (Array) is different
from the type of an IArray.

However, an IArray behaves like a functional Array
after all its elements have been filled

We provide a primitive function for this conversion
cvt_IArray_to_Array ia -> a

13

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-25

Types Issue (cont.)

Hindley-Milner type system has to be extended
to deal with I-structures

⇒ ref type -- requires new rules

don’t have time to get into this ...

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-26

All functional data structures in pH

are implemented as I-structures.

14

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-27

Array Comprehensions:
a packaging of I-structures

array dimension
([(ie1,e1) | x <- xs, y <- ys]

++ [(ie2,e2) | z <- zs])

let a = iArray dimension []
for x <- xs do

for y <- ys do
a!ie1 := e1

finally ()
finally ()
for z <- zs do

a!ie2 := e2
finally ()

in cvt_IArray_to_Array a

translated into
We have
used pH
syntax
but it is
trivial
to
translate
this into
Haskell
syntax

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-28

I-structures are non functional

let x = iArray (1,2) []
in f x x

≡

f (iArray (1,2) []) (iArray (1,2) []) ?

f x y = let x!1 := 10
y!1 := 20

in ()

15

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-29

The example

f x y = let x!1 := 10
y!1 := 20

in ()

let
x = iArray (1,2) []
in
f x x
⇓

f (iArray (1,2) [])
(iArray (1,2) [])

⇓

let
x = iArray (1,2) []
x!1 := 10
x!1 := 20
⇓
"blow up"

let
t1 = iArray (1,2) []
t2 = iArray (1,2) []
t1!1 := 10
t2!1 := 20
in ()

October 12, 2006 http://www.csg.csail.mit.edu/6.827 L10-30

We have finally slipped into
- parallelism issues
- side-effects

More on these issues after the quiz

