
Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L11-1October 19, 2006 http://www.csg.csail.mit.edu/6.827

M-Structures: Programming with
State and Nondeterminism

October 19, 2006

Corrected October23

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-2

Limitations of
Functional Programming

• For some problems
– Forces an obscure coding style - thread the “state”
– Requires too much storage
– Cannot express the parallelism in some algorithms

• Cannot express non-deterministic algorithms
– histograms
– graph traversals

• Cannot express non-determinism inherent in
– access to shared resources
– storage allocator

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-3

Language extensions

• I-structures: “write once” variables
– Multiple writes cause an “inconsistency” and blowup the

program. A flavor of logic variables
– Benign side-effects but equational reasoning is weakened

• M-structures: “synchronized reads and writes”.
– each read “empties” the variable and a write to a “full”

variable causes a program blowup
– also requires the notion of a “barrier” to control the order

of evaluation of some expressions
– equational reasoning is weakened dramatically

• Monads: a new way of manipulating programs
(has become very popular in the last decade)
– preserves equational reasoning
– not obvious how to use it for expressing parallelismO

ct
ob

er
 2

6

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-4

I-Cell: The Simplest I-Structure
data ICell a = ICell {contents :: . a}

I-Structure fieldConstructor
ICell :: a -> ICell a

ICell e or ICell {contents = e}

or create an empty cell and fill it (a “side-effect”)

ic = ICell {}
contents ic := e

Selector (iFetch)
contents ic or
case ic of

ICell x -> ... x ...

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-5

I-Cell: Dynamic Behavior

• Let allocated I-cells be represented by objects o1, o2, ...
• Let the states of an I-cell be represented as:

empty(o) | full(o,v) | error(o)

• When a cell is allocated it is assigned a new object
descriptor o and is empty, i.e., empty(o)

• Reading an I-cell
(x=iFetch(o) ; full(o,v)) ⇒ (x=v ; full(o,v))

• Storing into an I-cell
(iStore(o,v) ; empty(o)) ⇒ full(o,v)
(iStore(o,v) ; full(o,v’)) ⇒ (error(o); full(o,v’))

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-6

Multiple-Store Error

Multiple assignments to an I-cell cause a
multiple store error

A program with exposed store error is
suppose to blow up!

Program --> T

The Top represents a contradiction

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-7

All functional data structures in pH

are implemented as I-structures.

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-8

I-structures are non functional

let x = iArray (1,2) []
in f x x

≡

f (iArray (1,2) []) (iArray (1,2) []) ?

f x y = let x!1 := 10
y!1 := 20

in ()

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-9

The example

f x y = let x!1 := 10
y!1 := 20

in ()

let
x = iArray (1,2) []

in
f x x
⇓

f (iArray (1,2) [])
(iArray (1,2) [])

⇓

let
x = iArray (1,2) []
x!1 := 10
x!1 := 20
⇓
"blow up"

let
t1 = iArray (1,2) []
t2 = iArray (1,2) []
t1!1 := 10
t2!1 := 20

in ()

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-10

M-Cell: The Simplest M-Structure
data MCell a = MCell {contents :: & a}

M-Structure field
Constructor

MCell :: a -> MCell a

MCell e or MCell {contents = e}

or create an empty cell and fill it

mc = MCell {}
contents mc := e overloaded notation

Selector (mFetch)
contents & mc

pattern matching ?

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-11

M-Cell: Dynamic Behavior

• Let allocated M-cells be represented by objects o1, o2, ...
• Let the states of an M-cell be represented as:

empty(o) | full(o,v) | error(o)

• When a cell is allocated it is assigned a new object
descriptor o and is empty, i.e., empty(o)

• Reading an M-cell
(x=mFetch(o) ; full(o,v)) ⇒ (x=v ; empty(o))

• Storing into an M-cell
(mStore(o,v) ; empty(o)) ⇒ full(o,v)
(mStore(o,v) ; full(o,v’)) ⇒ (error(o); full(o,v’))

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-12

The Need of Barriers

Suppose we want to replace the contents of M-
Cell mc by zero.

Correct ?

Second attempt:

let old = content & mc >>>
content mc := 0

in ...

First attempt:
let old = content & mc

content mc := 0
in ...

We need to empty it first to avoid a double store
error

barrier

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-13

Examine: like a read operation

contents mc ≡ let v = contents & mc
contents mc := v

in
v

M-Cell: Imperative Reads and Writes

Replace: like an update operation
contents & mc := e ≡

v = e
(_ = v >>>

_ = contents & mc >>>
contents mc := v)

M-structures with barriers have the full expressive
power of imperative languages but the language
is not sequential!

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-14

Barriers: Dynamic Behavior

• A barrier discharges when all the
bindings in its pre-region terminate, i.e.,
all expressions become values.

let
(y = 1+7
>>>
z = 3)

in
z

⇒ ⇒

let
(y = 8
>>>
z = 3)

in
z

⇒

let
(y = 8

z = 3)
in

z

let
y = 8

z = 3
in

3

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-15

M-Arrays

. . .• Allocate

x = mArray (1,n) []

• Put

x!2 := 5
A put operation on
a full slot is an error

• Take

x!&2

⊥ ⊥

⊥ ⊥

⊥

5

⊥ ⊥⊥

1 2 . . . n

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-16

Three Examples

• Histograms
• Inserting an element in a list
• Graph traversal (next lecture)

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-17

Histogram of Elements in a Tree

Histogram

21

1 2 3 4 5

Tree

2

5 2 3

2 15 32 4

4 2 1

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-18

data Tree = Leaf Int | Node Tree Tree
traverse :: Tree ->(ArrayI Int)->(ArrayI Int)
traverse (Leaf i) hist = incr hist i
traverse (Node ltree rtree) hist = ?

Histogram: A Functional Solution
Thread the histogram array

incr hist j = ?

mkHistogram tree = ?

let hL = traverse ltree hist
in traverse rtree hL

let inc i = if i == j then (hist!i)+1
else hist!i

in mkArray (bounds hist) inc

let hist = array (1,5) [0 | i <- [1..5]]
in traverse tree hist

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-19

Histogram : Using M-structures
mkHistogram tree =

let hist = mArray (1,5) [0 | i <- [1..5]]
(traverse tree hist

>>>
hist’ = hist)

in hist’

traverse :: Tree -> (MArrayI Int) -> ()
traverse (Leaf i) hist = ?

traverse (Node ltree rtree) hist = ?

No threading, No copying
+ Natural coding style and more parallelism

Let hist!i := hist!&i + 1
in ()

Let traverse ltree hist
traverse rtree hist

in ()

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-20

Mutable Lists

data MList t = MNil
| MCons {hd::t, tl::&(MList t)

Allocate
x = MCons {hd = 5}

Take
tl & x

Put
tl x := v

Any field in an algebraic type can be specified as an
M-structure field by marking it with an “&”

No side-effects while pattern matching

M-structure slot

In pattern matching
m-fields have the
“examine semantics”

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-21

Inserting an element in a list

Insert d

Functional: A new list
whose last element is b

Insert b

a d c

a d c b

a d c

M-structures: Old list whose
last element is mutated to
point to b

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-22

Insert: Functional and Non Functional
Functional solution:

insertf [] x = [x]
insertf (y:ys) x = if (x==y) then y:ys

else y:(insertf ys x)

M-structure solution:
insertm ys x =

case ys of
MNil -> MCons x MNil
MCons y ys’ -> if x == y then ys

else ?
let tl ys := insertm (tl&ys) x
in ys

Can you replace tl&ys by ys’ ? No

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-23

Subtle Issues

assuming a and b are not in ys.

ys2

b a...

Can the following list be produced?

ys1 = insertm ys a
ys2 = insertm ys1 b

ys1 = insertf ys a
ys2 = insertf ys1 b

Compare

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-24

Out-of-order Insertion

ys2

b a...

Can the following list be produced?

ys1 = insertm ys a
ys2 = insertm ys1 b

ys1 = insertf ys a
ys2 = insertf ys1 b

Compare ys2’s assuming a and b are not in ys.

ys1 can be returned before the insertion of a is
complete.

How can we stop the out of order insertion ?

yes!no

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-25

insertm Reexamined
insertm ys x =

case ys of
MNil -> MCons x MNil
MCons y ys’ ->
if x == y then ys

else let tl ys := insertm (tl&ys) x
in ys

• In all cases to return the answer, ys has to
be destructured and y has to be read

• In the MNil and x==y cases the answer is
returned only after the insertion is complete

• However, in the !(x==Y) case ys can be
returned even before insertm begins

October 19, 2006 http://www.csg.csail.mit.edu/6.827 L11-26

Avoiding out-of-order insertion

insertm ys x =
case ys of

MNil -> MCons x MNil
MCons y ys’ ->
if x == y then ys

else let

tl ys := insertm (tl&ys) x

in ys

Notice (tl&ys) can’t be read again before (tl ys) is set

tlPtr = tl&ys

tlPtr

listToBeReturned

Do the take first!

(>>>
listToBeReturned = ys)

