M-Structures: Programming with State and Nondeterminism

Arvind
Computer Science and Artificial Intelligence Laboratory
M.I.T.

October 19, 2006

Corrected October 23
Limitations of Functional Programming

- For some problems
 - Forces an *obscure coding style* - thread the “state”
 - Requires too much *storage*
 - Cannot express the *parallelism* in some algorithms
- Cannot express *non-deterministic algorithms*
 - histograms
 - graph traversals
- Cannot express *non-determinism inherent in*
 - access to shared resources
 - storage allocator
Language extensions

- **I-structures: “write once” variables**
 - Multiple writes cause an “inconsistency” and blowup the program. A flavor of logic variables
 - Benign side-effects but equational reasoning is weakened

- **M-structures: “synchronized reads and writes”.**
 - each read “empties” the variable and a write to a “full” variable causes a program blowup
 - also requires the notion of a “barrier” to control the order of evaluation of some expressions
 - equational reasoning is weakened dramatically

- **Monads: a new way of manipulating programs**
 (has become very popular in the last decade)
 - preserves equational reasoning
 - not obvious how to use it for expressing parallelism
I-Cell: The Simplest I-Structure

```
data ICell a = ICell {contents :: . a}
```

Constructor

```
ICell :: a -> ICell a

ICell e or ICell {contents = e}
```

or create an empty cell and fill it (a “side-effect”)

```
ic = ICell {}
contents ic := e
```

Selector (iFetch)

```
contents ic or
case ic of
  ICell x -> ... x ...
```
I-Cell: Dynamic Behavior

• Let allocated I-cells be represented by objects o_1, o_2, \ldots
• Let the states of an I-cell be represented as:

$$\text{empty}(o) \mid \text{full}(o, v) \mid \text{error}(o)$$

• When a cell is allocated it is assigned a new object descriptor o and is empty, i.e., $\text{empty}(o)$

• Reading an I-cell
 $$x = \text{i Fetch}(o) ; \text{full}(o, v) \Rightarrow (x = v \ ; \ \text{full}(o, v))$$

• Storing into an I-cell
 $$\text{i Store}(o, v) ; \text{empty}(o) \Rightarrow \text{full}(o, v)$$
 $$\text{i Store}(o, v) ; \text{full}(o, v') \Rightarrow (\text{error}(o) ; \ \text{full}(o, v'))$$
Multiple-Store Error

Multiple assignments to an I-cell cause a multiple store error

A program with exposed store error is suppose to blow up!

Program --> T

The Top represents a contradiction
All functional data structures in pH are implemented as I-structures.
I-structures are *non functional*

\[
f x y = \text{let } x!1 := 10 \\
y!1 := 20 \\
\text{in } ()
\]

\[
\text{let } x = \text{iArray} (1,2) [] \\
in \ f x x
\]

\[
\equiv
\]

\[
f (\text{iArray} (1,2) []) (\text{iArray} (1,2) [])
\]
The example

\[
\begin{align*}
 f \ x \ y &= \text{let } x!1 := 10 \\
 & \quad \text{y!1 := 20} \\
 & \quad \text{in } ()
\end{align*}
\]

\[
\begin{align*}
 \text{let } & \quad x = \text{iArray (1,2) []} \\
 \text{in} & \quad f \ x \ x \\
 \Downarrow & \quad \text{"blow up"}
\end{align*}
\]

\[
\begin{align*}
 f & (\text{iArray (1,2) []}) \\
 & (\text{iArray (1,2) []}) \\
 \Downarrow & \quad \text{let} \\
 t1 & = \text{iArray (1,2) []} \\
 t2 & = \text{iArray (1,2) []} \\
 t1!1 & := 10 \\
 t2!1 & := 20 \\
 \text{in } ()
\end{align*}
\]
M-Cell: The Simplest M-Structure

data MCell a = MCell {contents :: & a}

Constructor

MCell :: a -> MCell a

MCell e or MCell {contents = e}

or create an empty cell and fill it

mc = MCell {}
contents mc := e

Selector (mFetch)

contents & mc

overloaded notation

pattern matching ?
M-Cell: Dynamic Behavior

• Let allocated M-cells be represented by objects \(o_1, o_2, \ldots \)
• Let the states of an M-cell be represented as:

\[
\text{empty}(o) \mid \text{full}(o,v) \mid \text{error}(o)
\]

• When a cell is allocated it is assigned a new object descriptor \(o \) and is empty, i.e., \(\text{empty}(o) \)

• Reading an M-cell

\[(x = \text{mFetch}(o); \text{full}(o,v)) \Rightarrow (x = v; \text{empty}(o))\]

• Storing into an M-cell

\[(\text{mStore}(o,v); \text{empty}(o)) \Rightarrow \text{full}(o,v)\]
\[(\text{mStore}(o,v); \text{full}(o,v')) \Rightarrow (\text{error}(o); \text{full}(o,v'))\]
The Need of Barriers

Suppose we want to replace the contents of M-Cell \texttt{mc} by zero.

First attempt:

\begin{verbatim}
let old = content & mc
content mc := 0
in ...
\end{verbatim}

Correct ?

We need to empty it first to avoid a double store error.

Second attempt:

\begin{verbatim}
let old = content & mc >>>
content mc := 0
in ...
\end{verbatim}

barrier
M-Cell: Imperative Reads and Writes

Examine: like a read operation

\[
\text{contents mc} \equiv \begin{array}{l}
\text{let } v = \text{contents & mc} \\
\text{contents mc := v} \\
\text{in} \\
\text{v}
\end{array}
\]

Replace: like an update operation

\[
\text{contents & mc := e} \equiv \\
\text{v = e} \\
(_ = v >>> \\
_ = \text{contents & mc} >>> \\
\text{contents mc := v})
\]

M-structures with barriers have the full expressive power of imperative languages but the language is not sequential!
Barriers: Dynamic Behavior

- A barrier discharges when all the bindings in its pre-region terminate, i.e., all expressions become values.

\[\begin{align*}
\text{let } & (y = 1 + 7 \\
& z = 3) \Rightarrow \text{let } (y = 8 \\
& z = 3) \Rightarrow \text{let } (y = 8 \\
& z = 3) \Rightarrow \text{let } (y = 8 \\
& z = 3) \Rightarrow y = 8 \\
\text{in } & z \Rightarrow \text{in } z \Rightarrow \text{in } z \Rightarrow \text{in } z \Rightarrow 3
\end{align*}\]
M-Arrays

• Allocate
 \[x = \text{mArray}(1,n) \]

• Put
 \[x!2 := 5 \]
 A put operation on a full slot is an error

• Take
 \[x!&2 \]
Three Examples

- Histograms
- Inserting an element in a list
- Graph traversal (next lecture)
Histogram of Elements in a Tree

Tree

Histogram

1 2 3 4 5
1 4 2 1 2
Histogram: A Functional Solution

Thread the histogram array

```haskell
data Tree = Leaf Int | Node Tree Tree

traverse :: Tree -> (ArrayI Int) -> (ArrayI Int)
traverse (Leaf i)           hist = incr hist i
traverse (Node ltree rtree) hist =
  let hL = traverse ltree hist
      in  traverse rtree hL
```

```haskell
let incr hist j =
  let inc i = if i == j then (hist!i)+1
                else hist!i
      in  mkArray (bounds hist) inc

mkHistogram tree =
  let hist = array (1,5) [ 0 | i <- [1..5]]
      in  traverse tree hist
```
Histogram: Using M-structures

```
mkHistogram tree =
  let hist = mArray (1,5) [ 0 | i <- [1..5]]
  (traverse tree hist
   >>>
   hist’ = hist)
  in hist’
```

```
traverse :: Tree -> (MArrayI Int) -> ()
traverse (Leaf i) hist = Let hist!i := hist!&i + 1
                             in ()
traverse (Node ltree rtree) hist =
  Let traverse ltree hist
  traverse rtree hist
  in ()
```

No threading, No copying
+ Natural coding style and more parallelism
Mutable Lists

Any field in an algebraic type can be specified as an M-structure field by marking it with an “&”

```
data MList t = MNil
            | MCons {hd::t, tl::&(MList t)}
```

Allocate
```
x = MCons {hd = 5}
```

Take
```
   tl & x
```

Put
```
   tl x := v
```

In pattern matching
m-fields have the “examine semantics”

No side-effects while pattern matching
Inserting an element in a list

Functional: A new list whose last element is b

M-structures: Old list whose last element is mutated to point to b
Insert: Functional and Non Functional

Functional solution:

```
insertf [] x = [x]
insertf (y:ys) x = if (x==y) then y:ys 
                  else y:(insertf ys x)
```

M-structure solution:

```
insertm ys x =
  case ys of 
    MNil -> MCons x MNil
    MCons y ys' -> if x == y then ys 
                    else ?
                    let tl ys := insertm (tl&ys) x 
                    in  ys

Can you replace `tl&ys` by `ys'`? No
Subtle Issues

Compare

\[ ys1 = \text{insertf} \ ys \ a \]
\[ ys2 = \text{insertf} \ ys1 \ b \]

\[ ys1 = \text{insertm} \ ys \ a \]
\[ ys2 = \text{insertm} \ ys1 \ b \]

assuming \( a \) and \( b \) are not in \( ys \).

Can the following list be produced?

\[ \ldots \rightarrow b \rightarrow a \]
Out-of-order Insertion

Compare $ys_2$'s assuming $a$ and $b$ are not in $ys$.

<table>
<thead>
<tr>
<th>No</th>
<th>$ys_1 = \text{insertf} \ ys \ a$</th>
<th>$ys_1 = \text{insertm} \ ys \ a$</th>
<th>Yes!</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$ys_2 = \text{insertf} \ ys_1 \ b$</td>
<td>$ys_2 = \text{insertm} \ ys_1 \ b$</td>
<td></td>
</tr>
</tbody>
</table>

Can the following list be produced?

$ys_2$

![Diagram of a list with elements b and a, with a shaded triangle indicating an insertion point.]

$ys_1$ can be returned before the insertion of $a$ is complete.

How can we stop the out of order insertion?
**insertm Reexamined**

```
insertm ys x =
 case ys of
 MNil -> MCons x MNil
 MCons y ys' ->
 if x == y then ys
 else let tl ys := insertm (tl&ys) x
 in ys
```

- In all cases to return the answer, \(ys\) has to be destructured and \(y\) has to be read.
- In the \(MNil\) and \(x==y\) cases the answer is returned only after the insertion is complete.
- However, in the \(! (x==y)\) case \(ys\) can be returned even before \(insertm\) begins.
Avoiding out-of-order insertion

\[
\text{insertm } ys \ x = \\
\quad \text{case } ys \text{ of} \\
\quad \quad \text{MNil} \rightarrow \text{MCons } x \ \text{MNil} \\
\quad \quad \text{MCons } y \ ys' \rightarrow \\
\quad \quad \quad \text{if } x == y \ \text{then } ys \\
\quad \quad \quad \quad \text{else let } ( \text{tlPtr} = \text{tl} & ys \rightarrow \\
\quad \quad \quad \text{listToBeReturned} = ys ) \\
\quad \quad \quad \text{tl } ys := \text{insertm } (\text{tl} & ys) \ x \\
\quad \quad \quad \text{tlPtr} \\
\quad \quad \text{in } ys \\
\quad \text{listToBeReturned}
\]

Notice \((\text{tl} \& ys)\) can’t be read again before \((\text{tl } ys)\) is set