M-Structures (continued)

plus

Introduction to the 1/0 Monad

Arvind
Computer Science and Artificial Intelligence Laboratory
M.L.T.

October 24, 2006

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-1

Insert: Functional and Non Functional

Functional solution:
insertf [] X
insertf (y:ys) x

[x]
IT (Xx==y) then y:ys
else y:(insertf ys Xx)

M-structure solution: In pattern matching
insertm ys x = m-fields have the

case ys of “examine semantics”

MNil -> MCons x MN1l
MCons y ys” ->
iIT X == y then ys

else let tl ys = i1nsertm (tl&ys) X
in ys
Can we replace tl&ys by ys” ? No

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-2

Out-of-order Insertion

Compare ys2’s assuming a and b are not in ys.

insertf ys a
insertf ysl b

Iinsertm ys a
insertm ysl b

ysl
ys2

no ys2 yesl!

> Can the following list be produced?

[& I
—— . —y b > a

ysl can be returned before the insertion of a iIs
complete.

yS

How can we stop the out of order insertion ?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-3

Insertm Reexamined

Insertm ys x =
case ys of
MN1 I -> MCons x MNil
MCons y ys” ->
iIT X == y then ys
else let tl ys = Insertm (tl&ys) X
In Vys

e In all cases to return the answer, ys has to
be destructured and y has to be read

e In the MNIl and x==y cases the answer is
returned only after the insertion is complete

e However, In the 1(X==y) case ys can be
returned even before 1nsertm begins

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-4

Avoiding out-of-order insertion

Insertm ys x = Do the take first!
case ys of
MN1 I -> MCons x MNil

MCons y ys” ->
IT X == y then ys
else let (tIPtr = tl&ys >>>
listToBeReturned = ys)
tl ys = 1nsertm -Ctl&ys)- X
tIPtr

in —ys—
listToBeReturned

Notice (tl&ys) can’t be read again before (tl ys) is set

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-5

Graph Traversal

data GNode =
GNode {1d :: Nodeid,
@ @ val :: Int,
nbrs:: [GNode] }
@ l a = GNode “A” 5 [Db]

b = GNode “B” 7 [d]
@ @ Cc = GNode *“C” 2 [b]

d = GNode “D” 3 [a]

e = GNode “E” 3 [c,d]

Write function rsum to sum the nodes reachable
from a given node.

rsum a ==> 15| ?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-6

Graph Traversal: First Attempt

data GNode =

@ @ GNode {1d :: Nodeid,
@ l val :-: Int,
@ @ nbrs:: [GNode] }

rsum (GNode x 1 nbs) =
I + sum (map rsum nbs)

Wrong!

A node can get counted more than once and in
case of a cycle, infinite number of times

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-7

Mutable Markings

Keep an updateable boolean flag to record if a
node has been visited. Initially the flag is set to
false in all nodes.

data GNode = GNode {i1d::Nodeid, val::Int,
nbrs::[GNode], flag::&Bool}

A procedure to return the current flag value of a
node and to simultaneously set it to true

marked node = let m = flag & node >>>
flag node :-= True

in
m

October 24, 2006 http://www.csg.csail.mit.edu/6.827

L12-8

Graph Traversal: Mutable Markings

data GNode =

@ @ GNode {1d :: Nodeid,
@ l val :-: Int,
@ @ nbrs:: [GNode]

flag: :&Bool }

rsum node =
1T marked node then O
else

(val node)
+ sum (map rsum (nbrs node))

Problem: Parallel execution
(rsum a)+(rsum b) ?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-9

Book-Keeping Information

data GNode = GNode {i1d::Nodeid, val::Int,
nbrs::[GNode], flag::&Bool}

The graph should not be mutated!

Keep the visited flags in a separate data structure -
a notebook with the following functions

mkNotebook :: () -> Notebook
member - - Notebook -> Nodeid -> Bool

Insertion: Immutable (functional) notebook
insert :: Notebook -> Nodeird -> Notebook

Insertion in a Mutable notebook causes a side-effect
insert :: Notebook -> Nodeid -> ()

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-10

Graph Traversal: immutable Notebook

Thread the notebook and the current sum through
the reachable nodes of the graph in any order

data GNode =
GNode {i1d::Nodeid, val::Int, nbrs::[GNode]}

rsum node =
let nb = mkNotebook (O -— a new notebook
(s,) = thread (0, nb) node
thread (s,nb) (GNode x 1 nbs) =
1T member nb x then (s,nb)
else let nb”> = Insert nb X

S” = s + 1
In | fold thread (s”,nb”) nbs | ?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-11

Graph Traversal: mutable Notebook

rsum node =
let nb = mkNotebook () -— a new notebook

rsum” (GNode x 1 nbs) =
1T (member nb x) then O
else let
insert nb x >>>
S =1 + sum (map rsum” nbs)
in s
In rsum’ node

- No threading
- No copying
but wrong !!!
After we check for membership but before we do
the insertion, some other insertion can get in.

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-12

Mutable NotebooKks: revisited

The test for membership and subsequent
Insertion have to be done atomically to avoid

races.
isMemberlIlnsertm :: Notebook -> Nodeid -> Bool
rsum node =
let nb = mkNotebook () -- a hew notebook
rsum” (GNode x 1 nbs) =
iIT (isMemberlInsert nb Xx)
then O
else 1 + sum (map rsum” nbs)
in

rsum” node

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-13

Notebook Representation: Tree

We can maintain the notebook as a (balanced) binary tree

data Tree = TEmpty | TNode Int Tree Tree

\

Nodes above the point of insertion have
to be copied in a functional solution

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-14

Notebook Representation: Hash Table
O—1c |

—t d -~ a o X ‘
hmax +—| W - b ‘

data MList t = MNil
| MCons {hd::t, tl::&(MList ©)}

mkNotebook () =
mArray (O,hmax) [(,MNil) | J <- [O..hmax]]

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-15

ISMemberlnsert

isMemberlnsert nb x =
let 1 = hash X
ysS = nbl&l
(flag, ys’) = Insertm” ys X
nb!t = ys*
in flag

Insertm® iIs the same as Insertm except that it

also returns a flag to indicate if a match was
found

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-16

Membership and Insertion

Insertm® is the same as insertm except that it also
returns a flag that indicates if a match was found

insertm®™ ys x =
case ys of

MNT -> (False,(MCons x MN1l))
MCons y ys” ->
IT X == y then (True,ys)
else let(tIPtr = tl&ys >>> ysTBR = ys)
(flag,ys””) = i1nsertm” tlPtr x
tl ys = ys””’

in
(flag, ysTBR)

October 24, 2006

http://www.csg.csail.mit.edu/6.827

L12-17

Summary

e M-structures were used heavily to program

— Monsoon dataflow machine run-time system,
including 170

— Id compiler in Id
— Non-deterministic numerical algorithms

e Programming with M-structures proved to
be full of perils!

— Encapsulate M-structures in functional data
structures, If possible

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-18

Using Monads for Input and
Output

Arvind
Computer Science and Artificial Intelligence Laboratory
M.L.T.

October 24, 2006

(based on a lecture by Jan-Willem Maessen)

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-19

Functional Languages and 1/0

z = T(xX) + ay);

In a functional language f and g can be
evaluated in any order

This Is not so If f or g had side-effects, e.g.
print statements

Is I/0 incompatible with FL?

L12-20

October 24, 2006 http://www.csg.csail.mit.edu/6.827

What other languages do

e EXxecute programs in a fixed order (top-to-
bottom, left-to-right):
(define (hello)
(princ “Hello “)

(princ “World *“))

Weakens equational reasoning:
(let ((a (T x))) (let ((b (9 ¥)))
(let ((b (@ ¥))) vs (let ((@a (T x)))
(+ a b))) (+ a b)))

e Provide explicit constructs for sequencing in FL
(princ “Hello “) >>> (princ “World “)

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-21

Using Barriers

echo :: O -> 0O
echo () =
let ¢ = getChar()
in 1f c==“\n" then O
else let putChar c
>>>

echo ()
in O

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-22

Barriers can destroy modularity?

myProgram ()

let 1nput = acceptAllThelnput()
>>>
consumeAndOutput 1nput

in O

Barriers don’t work well when there is complex
Interleaving of producer and consumer

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-23

Another solution:
Magic return value

getChar returns a magic value in addition to the
character indicating that further 1/0 is safe.

echo :: World -> World
echo worldO =
let (c, worldl) = getChar worldO
in 1If c==“\n" then ()
else let world2
wor 1d3
in world3

putChar c worldl
echo world2

Used in Id and Clean

(Single)-threading is users responsibility

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-24

|/0 and Computation

main -:- World -> World

OS provides the initial state of the world and
supports I/0 actions on the world

Computation affects the world through these
/0O actions

Is these another possible way of
dealing with the world?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-25

Example: Role of a
Program Driver

Suppose by convention

main :-: [string]
main = [“Hello”, “world!”’]
or
main = let a = “Hello”
b = “World!”
in [a,b]

Program is a specification of intended effect to be
performed by the program driver

The driver, a primitive one indeed, takes a string
and treats it as a sequence of commands to print.

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-26

Monadic 1/0 Iin Haskell

Treats a sequence of 1/0 commands as a
specification to interact with the outside world.

The program produces an actionspec, which the
program driver turns into real 1/0 actions.

A program that produces an actionspec remains
purely functional!

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-27

Programs to produce actionspecs

main -2 10 O
putChar :: Char -> 10 O
getChar :-: 10 Char

main = putChar “a

IS an actionspec that says that character “a” is to be
output to some standard output device

How can we sequence actionspecs?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-28

Sequencing

We need a way to compose actionspecs:

¢G> 2100 ->100 ->100

Example:

October 24, 2006

putChar “H”> >> putChar “1’ >>
putChar “1!’ 2 10 O

putString :-: String -> 10 O
putString “” = done
putString (c:cs)

putChar c >> putString cs

http://www.csg.csail.mit.edu/6.827 L12-29

Monads: Composing Actionspecs

We need some way to get at the results of getChar
(>>=) - 1I0a->((G@->10Db) -=>100D
We read the “bind” operator as follows:

e Perform the action represented by X,
producing a value of type “a”

e Apply function \a -> X, to that value,
producing a new actionspec x, -: 10 b
e Perform the action represented by X,
producing a value of type b

Example: getChar >>= putChar
the same as getChar >>= \c -> putChar c

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-30

An Example

main =
let
iIslc ¢ = putChar (1if (“a’<=c)&&(c<=“z?)
then “y”’
else “n?)
in

getChar >>= 1islc

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-31

Turning expressions into actions

return :: a -> 10 a
getLine :-: 10 String

getLine = getChar >>= \c ->
iIT (c == “\n’) then
return 7
else getLine >>= \s ->
return (c:s)

where “\n” represents the newline character

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-32

Monadic 1I/0

10 a: computation which does some 1/0,
then produces a value of type a.

>) 22 1I0a ->10b -> 10 Db
G>=) - 1I0a->CG@G->10Db) ->100Db
return -: a -> 10 a

Primitive actionspecs:
getChar - 10 Char

putChar - Char -> 10 O
openFile, hClose,

Monadic 1/0 is a clever, type-safe idea which has
become a rage in the FL community.

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-33

