
Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L12-1October 24, 2006 http://www.csg.csail.mit.edu/6.827

M-Structures (Continued)

plus

Introduction to the I/O Monad

October 24, 2006

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-2

Insert: Functional and Non Functional
Functional solution:

insertf [] x = [x]
insertf (y:ys) x = if (x==y) then y:ys

else y:(insertf ys x)

M-structure solution:
insertm ys x =
case ys of

MNil -> MCons x MNil
MCons y ys’ ->
if x == y then ys

else let tl ys := insertm (tl&ys) x
in ys

Can we replace tl&ys by ys’ ?

In pattern matching
m-fields have the
“examine semantics”

No

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-3

Out-of-order Insertion

ys2

b a...

Can the following list be produced?

ys1 = insertm ys a
ys2 = insertm ys1 b

ys1 = insertf ys a
ys2 = insertf ys1 b

Compare ys2’s assuming a and b are not in ys.

ys1 can be returned before the insertion of a is
complete.

How can we stop the out of order insertion ?

yes!no

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-4

insertm Reexamined
insertm ys x =

case ys of
MNil -> MCons x MNil
MCons y ys’ ->
if x == y then ys

else let tl ys := insertm (tl&ys) x
in ys

• In all cases to return the answer, ys has to
be destructured and y has to be read

• In the MNil and x==y cases the answer is
returned only after the insertion is complete

• However, in the !(x==y) case ys can be
returned even before insertm begins

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-5

Avoiding out-of-order insertion

insertm ys x =
case ys of

MNil -> MCons x MNil
MCons y ys’ ->
if x == y then ys

else let

tl ys := insertm (tl&ys) x

in ys

Notice (tl&ys) can’t be read again before (tl ys) is set

tlPtr = tl&ys

tlPtr

listToBeReturned

Do the take first!

(>>>
listToBeReturned = ys)

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-6

Graph Traversal

data GNode =
GNode {id :: Nodeid,

val :: Int,
nbrs:: [GNode] }

a = GNode “A” 5 [b]
b = GNode “B” 7 [d]
c = GNode “C” 2 [b]
d = GNode “D” 3 [a]
e = GNode “E” 3 [c,d]

E,3

C,2

D,3

A,5

B,7

Write function rsum to sum the nodes reachable
from a given node.

rsum a ==> ?15

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-7

Graph Traversal: First Attempt

rsum (GNode x i nbs) =
i + sum (map rsum nbs)

E,3

C,2

D,3

A,5

B,7 data GNode =
GNode {id :: Nodeid,

val :: Int,
nbrs:: [GNode] }

Wrong!

A node can get counted more than once and in
case of a cycle, infinite number of times

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-8

Mutable Markings

marked node = let m = flag & node >>>
flag node := True

in
m

data GNode = GNode {id::Nodeid, val::Int,
nbrs::[GNode], flag::&Bool}

Keep an updateable boolean flag to record if a
node has been visited. Initially the flag is set to
false in all nodes.

A procedure to return the current flag value of a
node and to simultaneously set it to true

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-9

Graph Traversal: Mutable Markings

rsum node =
if marked node then 0
else

(val node)
+ sum (map rsum (nbrs node))

E,3

C,2

D,3

A,5

B,7 data GNode =
GNode {id :: Nodeid,

val :: Int,
nbrs:: [GNode]
flag::&Bool }

Problem: Parallel execution
(rsum a)+(rsum b) ?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-10

Book-Keeping Information

The graph should not be mutated!

Keep the visited flags in a separate data structure -
a notebook with the following functions

data GNode = GNode {id::Nodeid, val::Int,
nbrs::[GNode], flag::&Bool}

Insertion: Immutable (functional) notebook
insert :: Notebook -> Nodeid -> Notebook

Insertion in a Mutable notebook causes a side-effect
insert :: Notebook -> Nodeid -> ()

mkNotebook :: () -> Notebook
member :: Notebook -> Nodeid -> Bool

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-11

Graph Traversal: Immutable Notebook

data GNode =
GNode {id::Nodeid, val::Int, nbrs::[GNode]}

rsum node =
let nb = mkNotebook () -- a new notebook

(s,_) = thread (0, nb) node
thread (s,nb) (GNode x i nbs) =

if member nb x then (s,nb)
else let nb’ = insert nb x

s’ = s + i
in ?

in s

Thread the notebook and the current sum through
the reachable nodes of the graph in any order

fold thread (s’,nb’) nbs

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-12

Graph Traversal: Mutable Notebook

rsum node =
let nb = mkNotebook () -- a new notebook

rsum’ (GNode x i nbs) =
if (member nb x) then 0
else let

insert nb x >>>
s = i + sum (map rsum’ nbs)

in s
in rsum’ node

- No threading
- No copying

but wrong !!!
After we check for membership but before we do
the insertion, some other insertion can get in.

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-13

Mutable Notebooks: revisited

isMemberInsertm :: Notebook -> Nodeid -> Bool
rsum node =

let nb = mkNotebook () -- a new notebook
rsum’ (GNode x i nbs) =

if (isMemberInsert nb x)
then 0
else i + sum (map rsum’ nbs)

in
rsum’ node

The test for membership and subsequent
insertion have to be done atomically to avoid
races.

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-14

Notebook Representation: Tree

We can maintain the notebook as a (balanced) binary tree

data Tree = TEmpty | TNode Int Tree Tree

Nodes above the point of insertion have
to be copied in a functional solution

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-15

data MList t = MNil
| MCons {hd::t, tl::&(MList t)}

mkNotebook () =
mArray (0,hmax) [(j,MNil) | j <- [0..hmax]]

Notebook Representation: Hash Table
0

hmax

c

bw

xad

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-16

isMemberInsert

isMemberInsert nb x =
let i = hash x

ys = nb!&i
(flag, ys’) = insertm' ys x
nb!i := ys'

in flag

insertm' is the same as insertm except that it
also returns a flag to indicate if a match was
found

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-17

Membership and Insertion

insertm' is the same as insertm except that it also
returns a flag that indicates if a match was found

insertm' ys x =
case ys of

MNil -> (False,(MCons x MNil))
MCons y ys’ ->

if x == y then (True,ys)
else let(tlPtr = tl&ys >>> ysTBR = ys)

(flag,ys’’) = insertm’ tlPtr x
tl ys := ys’’

in
(flag, ysTBR)

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-18

Summary

• M-structures were used heavily to program
– Monsoon dataflow machine run-time system,

including I/O
– Id compiler in Id
– Non-deterministic numerical algorithms

• Programming with M-structures proved to
be full of perils!
– Encapsulate M-structures in functional data

structures, if possible

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L12-19October 24, 2006 http://www.csg.csail.mit.edu/6.827

Using Monads for Input and
Output

October 24, 2006

(based on a lecture by Jan-Willem Maessen)

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-20

Functional Languages and I/O

z := f(x) + g(y);

In a functional language f and g can be
evaluated in any order

This is not so if f or g had side-effects, e.g.
print statements

Is I/O incompatible with FL?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-21

What other languages do

• Execute programs in a fixed order (top-to-
bottom, left-to-right):
(define (hello)

(princ “Hello “)
(princ “World “))

Weakens equational reasoning:
(let ((a (f x))) (let ((b (g y)))
(let ((b (g y))) vs (let ((a (f x)))
(+ a b))) (+ a b)))

• Provide explicit constructs for sequencing in FL
(princ “Hello “) >>> (princ “World “)

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-22

Using Barriers

echo :: () -> ()
echo () =

let c = getChar()
in if c==‘\n’ then ()

else let putChar c
>>>
echo ()

in ()

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-23

Barriers can destroy modularity?

myProgram () =
let input = acceptAllTheInput()

>>>
consumeAndOutput input

in ()

Barriers don’t work well when there is complex
interleaving of producer and consumer

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-24

Another solution:
Magic return value
getChar returns a magic value in addition to the

character indicating that further I/O is safe.

echo :: World -> World
echo world0 =

let (c, world1) = getChar world0
in if c==‘\n’ then ()

else let world2 = putChar c world1
world3 = echo world2

in world3

Used in Id and Clean

(Single)-threading is users responsibility

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-25

I/O and Computation

main :: World -> World

OS provides the initial state of the world and
supports I/O actions on the world

Computation affects the world through these
I/O actions

Is these another possible way of
dealing with the world?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-26

Example: Role of a
Program Driver

Suppose by convention

main :: [string]
main = [“Hello”, “world!”]

or
main = let a = “Hello”

b = “World!”
in [a,b]

Program is a specification of intended effect to be
performed by the program driver

The driver, a primitive one indeed, takes a string
and treats it as a sequence of commands to print.

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-27

Monadic I/O in Haskell

Treats a sequence of I/O commands as a
specification to interact with the outside world.

The program produces an actionspec, which the
program driver turns into real I/O actions.

A program that produces an actionspec remains
purely functional!

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-28

Programs to produce actionspecs

main :: IO ()
putChar :: Char -> IO ()
getChar :: IO Char

main = putChar ‘a’

is an actionspec that says that character “a” is to be
output to some standard output device

How can we sequence actionspecs?

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-29

Sequencing

We need a way to compose actionspecs:

(>>) :: IO () -> IO () -> IO ()

Example:

putChar ‘H’ >> putChar ‘i’ >>
putChar ‘!’ :: IO ()

putString :: String -> IO ()
putString “” = done
putString (c:cs) =

putChar c >> putString cs

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-30

Monads: Composing Actionspecs

We need some way to get at the results of getChar

(>>=) :: IO a -> (a -> IO b) -> IO b

We read the “bind” operator as follows:

x1 >>= \a -> x2

• Perform the action represented by x1,
producing a value of type “a”
• Apply function \a -> x2 to that value,
producing a new actionspec x2 :: IO b
• Perform the action represented by x2,
producing a value of type b

Example: getChar >>= putChar
the same as getChar >>= \c -> putChar c

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-31

An Example

main =
let

islc c = putChar (if (‘a’<=c)&&(c<=‘z’)
then ‘y’
else ‘n’)

in
getChar >>= islc

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-32

Turning expressions into actions

return :: a -> IO a

getLine :: IO String

getLine = getChar >>= \c ->
if (c == ‘\n’) then

return “”
else getLine >>= \s ->

return (c:s)

where ‘\n’ represents the newline character

October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-33

Monadic I/O

IO a: computation which does some I/O,
then produces a value of type a.

(>>) :: IO a -> IO b -> IO b
(>>=) :: IO a -> (a -> IO b) -> IO b
return :: a -> IO a

Primitive actionspecs:
getChar :: IO Char
putChar :: Char -> IO ()
openFile, hClose, ...

Monadic I/O is a clever, type-safe idea which has
become a rage in the FL community.

