
1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L13-1October 26, 2006 http://www.csg.csail.mit.edu/6.827

Monadic Programming

October 26, 2006

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-2

Outline
• IO Monad

– Example: wc program
– Some properties

• Monadic laws
• Creating our own monads:

– Id: The simplest monad
– State
– Unique name generator
– Emulating simple I/O
– Exceptions

2

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-3

Monadic I/O

IO a: computation which does some I/O,
then produces a value of type a.

(>>) :: IO a -> IO b -> IO b
(>>=) :: IO a -> (a -> IO b) -> IO b
return :: a -> IO a

Primitive actionspecs:
getChar :: IO Char
putChar :: Char -> IO ()
openFile, hClose, ...

Monadic I/O is a clever, type-safe idea which has
become a rage in the FL community.

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-4

Word Count Program

wcs :: String -> Bool -> (Int,Int,Int)
-> (Int,Int,Int)

wcs [] inWord (nc,nw,nl) = (nc,nw,nl)
wcs (c:cs) inWord (nc,nw,nl) =

if (isNewLine c) then
wcs cs False ((nc+1),nw,(nl+1))

else if (isSpace c) then
wcs cs False ((nc+1),nw,nl)

else if (not inWord) then
wcs cs True ((nc+1),(nw+1),nl)

else
wcs cs True ((nc+1),nw,nl)

Can we read the string from an input file as needed?

3

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-5

File Handling Primitives

type Filepath = String
data IOMode = ReadMode | WriteMode | ...
data Handle = ... implemented as built-in type

openFile :: FilePath -> IOMode -> IO Handle
hClose :: Handle -> IO ()
hIsEOF :: Handle -> IO Bool
hGetChar :: Handle -> IO Char

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-6

Monadic Word Count Program

wc filename =
openFile filename ReadMode >>= \h ->
wch h False (0,0,0) >>= \(nc,nw,nl) ->
hClose h >>
return (nc,nw,nl)

file name

wch :: Handle -> Bool -> (Int,Int,Int)
-> IO (Int,Int,Int)

wcs :: String -> Bool -> (Int,Int,Int)
-> (Int,Int,Int)

wc :: String -> IO (Int,Int,Int)

4

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-7

Monadic Word Count Program cont.

wch :: Handle -> Bool -> (Int,Int,Int)
-> IO (Int,Int,Int)

wch h inWord (nc,nw,nl) =
hIsEOF h >>= \eof ->

if eof then return (nc,nw,nl)
else
hGetChar h >>= \c ->

if (isNewLine c) then
wch h False ((nc+1),nw,(nl+1))

else if (isSpace c) then
wch h False ((nc+1),nw,nl)

else if (not inWord) then
wch h True ((nc+1),(nw+1),nl)

else
wch h True ((nc+1),nw,nl)

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-8

Calling WC
main :: IO ()

main = getArgs >>= \[filename] ->
wc filename >>= \(nc,nw,nl) ->
putStr “ ” >>
putStr (show nc) >>
putStr “ ” >>
putStr (show nw) >>
putStr “ ” >>
putStr (show nl) >>
putStr “ ” >>
putStr filename >>
putStr “\n”

Once a value enters the IO monad it cannot leave it!

5

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-9

Error Handling

Monad can abort if an error occurs.
Can add a function to handle errors:

catch :: IO a -> (IOError -> IO a) -> IO a
ioError :: IOError -> IO a
fail :: String -> IO a

catch echo (\err ->
fail (“I/O error: ”++show err))

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-10

The Modularity Problem

Inserting a print (say for debugging):

sqrt :: Float -> IO Float
sqrt x =

let ...
a = (putStrLn ...) :: IO String

in a >> return result

Without the binding has no effect; the I/O has to
be exposed to the caller:

One print statement changes the whole structure
of the program!

6

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-11

Monadic I/O is Sequential

wc filename1 >>= \(nc1,nw1,nl1) ->
wc filename2 >>= \(nc2,nw2,nl2) ->
return (nc1+nc2, nw1+nw2, nl1+nl2)!

Monadic I/O is not conducive for parallel operations

The two wc calls are totally independent but the
IO they perform must be sequentialized!

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-12

Syntactic sugar: do

do e -> e

do e ; dostmts -> e >> do dostmts

do p<-e ; dostmts -> e >>= \p-> do dostmts

do let p=e ; dostmts -> let p=e in do dostmts

do (nc1,nw1,nl1) <- wc filename1
(nc2,nw2,nl2) <- wc filename2

return (nc1+nc2, nw1+nw2, nl1+nl2)

wc filename1 >>= \(nc1,nw1,nl1) ->
wc filename2 >>= \(nc2,nw2,nl2) ->
return (nc1+nc2, nw1+nw2, nl1+nl2)

versus

7

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-13

Are these program meaningful?

do (nc1,nw1,nl1) <- wc filename1
(nc2,nw2,nl2) <- wc filename1

return (nc1+nc2, nw1+nw2, nl1+nl2)

foo = wc filename1
do (nc1,nw1,nl1) <- foo

(nc2,nw2,nl2) <- foo
return (nc1+nc2, nw1+nw2, nl1+nl2)

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-14

Monadic Laws

1. do x <- return a ; m ≡ (\x -> do m) a

2. do x <- m ; return x ≡ m

3. do y <- (do x <- m ; n) ; o
≡ do x <- m; (do y <- n; o)

x ∉ FV(o)

do m ; n ≡ do _ <- m ; n

True for all monads. Only primitive operations
distinguish monads from each other

m >> (n >> o) ≡ (m >> n) >> o

A derived axiom:

8

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-15

Properties of programs involving IO

putString [] = return ()
putString (c:cs) = putChar c >> putString cs

[] ++ bs = bs
(a:as) ++ bs = a : (as ++ bs)

putString as >> putString bs
≡ putString (as++bs)

One can prove this just using monadic laws
without involving I/O properties

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-16

Monads and Let

1. let x = a in m ≡ (\x -> m) a
2. let x = m in x ≡ m
3. let y = (let x = m in n) in o

≡ let x = m in (let y = n in o)
x ∉ FV(o)

1. do x <- return a ; m ≡ (\x -> do m) a
2. do x <- m ; return x ≡ m
3. do y <- (do x <- m ; n) ; o

≡ do x <- m; (do y <- n; o)
x ∉ FV(o)

Monadic binding behaves like let

9

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-17

Monads and Let

• Relationship between monads and let is deep
• This is used to embed languages inside

Haskell
• IO is a special sublanguage with side effects

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
fail :: String -> m a --*

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-18

Fib in Monadic Style
fib n = fib n =
if (n<=1) then n if (n<=1) then return n
else else
let do
n1 = n - 1 n1 <- return (n-1)
n2 = n - 2 n2 <- return (n-2)
f1 = fib n1 f1 <- fib n1
f2 = fib n2 f2 <- fib n2

in f1 + f2 return (f1+f2)

Note the awkward style: everything must be named!

10

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-19

Outline
• IO Monad

– Example: wc program
– Some properties

• Monadic laws
• Creating our own monads:

– Id: The simplest monad
– State
– Unique name generator
– Emulating simple I/O
– Exceptions

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-20

Id: The Simplest Monad
newtype Id a = Id a

instance Monad Id where
return a = Id a
Id a >>= f = f a

runId (Id a) = a

• This monad has no special operations!
• Indeed, we could just have used let
• The runId operation runs our computation

For IO monad run was done outside the language

11

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-21

The State Monad
• Allow the use of a single piece of mutable

state

put :: s -> State s ()
get :: State s s

runState :: s -> State s r -> (s,r)

instance Monad (State s)

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-22

The State Monad: Implementation

newtype State s r = S (s -> (s,r))

instance Monad (State s) where
return r = S (\s -> (s,r))
S f >>= g = S (\s -> let (s’, r) = f s

S h = g r
in h s’)

get = S (\s -> (s,s))
put s = S (\o -> (s,())
runState s (S c) = c s

12

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-23

Generating Unique Identifiers
type Uniq = Int
type UniqM = State Int

runUniqM :: UniqM r -> r
runUniqM comp = snd (runState 0 comp)

uniq :: UniqM Uniq
uniq = do u <- get

put (u+1)
return u

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-24

Poor Man’s I/O

type PoorIO a = State (String, String)

putChar :: Char -> PoorIO ()
putChar c = do (in, out) <- get

put (in, out++[c])

getChar :: PoorIO Char
getChar = do (in, out) <- get

case in of
a:as -> do put (as, out)

return a
[] -> fail “EOF”

13

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-25

Error Handling using Maybe
instance Monad Maybe where
return a = Just a
Nothing >>= f = Nothing
Just a >>= f = f a
fail _ = Nothing

Just a `mplus` b = Just a
Nothing `mplus` b = b

do m’ <- matrixInverse m
y <- matrixVectMult m x
return y

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-26

Combining Monads

• To simulate I/O, combine State and Maybe.
• There are two ways to do this combination:

newtype SM s a = SM (s -> (s, Maybe a))
newtype MS s a = MS (s -> Maybe (s, a))

SM MS
([],””) ([],””)

do putChar ‘H’ ([],”H”) ([],”H”)
a <- getChar ([],”H”) Nothing
putChar ‘I’ skipped

`mplus` putChar ‘!’ ([],”H!”) ([],”!”)

14

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-27

Special Monads

• Operations inexpressible in pure Haskell

• IO Monad
Primitives must actually call the OS
Also used to embed C code

• State Transformer Monad
Embeds arbitrary mutable state
Alternative to M-structures + barriers

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-28

Extras

15

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-29

Monadic Laws

1. return a >>= \x -> m ≡ (\x -> m) a

2. m >>= \x -> return x ≡ m

3. (m >>= \x -> n) >>= \y -> o
≡ m >>= \x -> (n >>= \y -> o)

x ∉ FV(o)

True in every monad by definition. Primitive
monadic operators distinguish one monad
from another

m >> (n >> o) ≡ (m >> n) >> o

A derived axiom:

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-30

Base case

putString [] = return ()

[] ++ bs = bs

putString [] >> putString bs

≡ return () >> putString bs
≡ putString bs
≡ putString ([]++bs)

16

October 26, 2006 http://www.csg.csail.mit.edu/6.827 L13-31

Inductive case

putString (a:as) = putChar a >> putString as

(a:as) ++ bs = a : (as ++ bs)

putString (a:as) >> putString bs

≡ (putChar a >> putString as) >> putString bs
≡ putChar a >> (putString as>>putString bs)
≡ putChar a >> (putString (as ++ bs))
≡ putString (a : (as ++ bs))
≡ putString ((a:as) ++ bs)

