
1

Nirav Dave
Computer Science and Artificial Intelligence Laboratory

M.I.T.

L14-1October 31, 2006 http://www.csg.csail.mit.edu/6.827

The State Monad and Friends

October 31, 2006

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-2

Outline
• What’s a Monad?

• Some standard monads:
– Id: The simplest monad
– Maybe
– State

• Some graph algorithms in monadic style
– list insertion
– graph traversal

• Composing monad transformers

2

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-3

What is a monad and Why should I care?

• A monad is an abstraction for linear
compositions
– Any linear composition can be represented via a

monad

• So it restricts our parallelism?
– Not always. It does provide a linear ordering for

meaning, but it could restrict the computational
parallelism (much like a barrier could)

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-4

Justifying Monadery

• So the monad typeclass is effectively sugar
(doesn’t add any power)?
– Yes: the monad typeclass is effectively sugar

• I don’t need abstractions. So why should I
use monads?
– Certain monads cannot be described inside the language

(e.g. IO)
– Because they allow us to safely add power to the

language

• Why did we pick this abstraction?
– Let’s us keep determinism if desired

3

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-5

Monadic Laws

1. do x <- return a ; m ≡ (\x -> do m) a

2. do x <- m ; return x ≡ m

3. do y <- (do x <- m ; n) ; o
≡ do x <- m; (do y <- n; o)

x ∉ FV(o)

True for all monads. Only primitive operations
distinguish monads from each other

When we define our own Monads, we have to give
the definition of >>= and return and make sure
that those definitions follow these laws.

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-6

Id: The Simplest Monad
newtype Id a = Id a

instance Monad Id where
return a = Id a
Id a >>= f = f a

runId (Id a) = a

• This monad has no special operations!
• Indeed, we could just have used let
• The runId operation runs our computation

For IO monad run was done outside the language

4

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-7

Maybe: Encapsulating failure
newtype Maybe a = Nothing

| Just a

Propagate failure

instance Monad Maybe where
return a = Just a

Nothing >>= f = Nothing
(Just a) >>= f = f a

fail str = Nothing

Just a `mplus` b = Just a
Nothing `mplus` b = b

Prioritize valid results

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-8

Using Maybe: a micro-parser

readITuple s0 = do
s1 <- readStr s0 “(”
(i,s2) <- readInt s1
s3 <- readStr s2 “,”
(j,s4) <- readInt s3
s5 <- readStr s4 “)”
return ((i,j),s5)

If any step fails, the
whole read fails

(readInt s) `mplus` (readITuple s)

readInt :: Stream -> Maybe (Int,Stream)
readStr :: Stream -> String -> Maybe Stream

readITuple :: Stream -> Maybe ((Int,Int), Stream)

5

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-9

The State Monad
• Allow the use of a single piece of mutable

state

put :: s -> State s ()
get :: State s s

runState :: s -> State s r -> (s,r)

instance Monad (State s)

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-10

The State Monad: Implementation

newtype State s r = S (s -> (s,r))

instance Monad (State s) where
return r = S (\s -> (s,r))
S f >>= g = S (\s -> let (s’, r) = f s

S h = g r
in h s’)

get = S (\s -> (s,s))
put s = S (\o -> (s, ())
evalState s (S c) = snd(c s)

6

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-11

Graph Traversal

data GNode =
GNode {gid :: Nodeid,

gval :: Int,
gnbrs:: [GNode] }

a = GNode “A” 5 [b]
b = GNode “B” 7 [d]
c = GNode “C” 2 [b]
d = GNode “D” 3 [a]
e = GNode “E” 3 [c,d]

E,3

C,2

D,3

A,5

B,7

Write function rsum to sum the nodes reachable
from a given node.

rsum a ==> ?15

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-12

rsum in a monadic style
rsum :: GNode -> Int
rsum gnode = let

nb_sum = rsum' 0 gnode
in
evalState nb_sum empty_nb

rsum' :: Int -> GNode -> (SN Int)
rsum' n gnode = do
let i = gid gnode
b <- visitedN i
if b then return n
else do
markN i
n' <- foldM rsum' n (gnbrs gnode)
return (n' + (gval gnode))

Check if we were here

Mark that we were here

This is our state
monad

7

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-13

SN: functional State
newtype Notebook = N [String]
type (SN i) = (State Notebook i)

new_nb = N []

markN :: String -> SN ()
markN i = do

N ns <- get
let ns' = i:ns
_ <- put (N ns')
return ()

visitedN :: String -> SN Bool
visitedN i = do

N ns <- get
return (elem i ns)

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-14

How “good” is this?

• Correctness?
– Yes

• Readable?
– Sure

• Parallelism
– Same as a “normal” functional implementation

• Could a Notebook embedded in
special monad be more efficient
better than a functional one?

More on this a little later…

8

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-15

Combining Monads

• What do you do if you want to thread
state and have a failure condition?
– (State Hash) Monad
– Maybe Monad

• Nest them?
– type MS n = Maybe (State Hash n)

(Maybe (Hash -> (Hash, n)))

– type SM n = State Hash (Maybe n)
(Hash -> Maybe (Hash, n))

So let’s give it a try…

Order
Matters!

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-16

Nesting Monads: SN and IO
printRSum :: GNode -> IO (Int)
printRSum gnode = do

x <- printRSum’ 0 gnode
putStrLn “got ” ++ (show x)

rsum' :: Int -> GNode -> IO (SN Int)
rsum' n gnode = do

let i = gid gnode
putStrLn “@Node” ++ (show i)
return do
b <- visitedN i
if b then return n

else do
markN i
n' <- foldM rsum' n (gnbrs gnode)
return (n' + (gval gnode))

IO Monad

SN Monad

Could we print here?

9

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-17

Monad Transformers

• State and error handling are separate features
• We can plug them together in multiple ways
• Other monads have a similar flavor
• Monad Transformer: add a feature to a Monad.

instance (Monad m) => Monad (ErrorT m)
instance (Monad m) => Monad (StateT s m)

type ErrorM = ErrorT Id
type StateM s = StateT s Id
type SM s a = StateT s (ErrorT Id)
type MS s a = ErrorT (StateT s Id)

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-18

Special Monads

• Operations inexpressible in pure Haskell

• IO Monad
Primitives must actually call the OS
Also used to embed C code

• State Transformer Monad
Embeds arbitrary mutable state
Alternative to M-structures + barriers

10

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-19

The State Transformer Monad

instance Monad (ST s)

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

runST :: (∀s. ST s a) -> a

• The special type of runST guarantees that an
STRef will not escape from its computation.

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-20

Independent State
Transformers

• In ST s t, the type s represents the “world.”

• We can have multiple independent worlds.
• The type of runST keeps them from

interacting.

ST q t

ST s t

ST r t

11

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-21

Mutable lists using ST

We can create as many mutable references as we
like, allowing us to build mutable structures just
as we would with I- and M-cells.

data RList s t = RNil
| RCons t (STRef s t)

rCons :: t-> RList s t-> ST s (RList s t)
rCons t ts = do r <- newSTRef ts

return (RCons t r)

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-22

Insert using RList

insertr RNil x = rCons x RNil
insertr ys@(RCons y yr) x =
if x==y then return ys
else do ys’ <- readSTRef yr

ys’’ <- insertr ys’ x
writeSTRef yr ys’’
return ys

12

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-23

Graph traversal: ST notebook

data GNode = GNode NodeId Int [GNode]

rsum node = do
nb <- mkNotebook
let rsum’ (GNode x i nbs) = do

seen <- memberAndInsert nb x
if seen
then return 0
else do nbs’ <- mapM rsum’ nbs

return (i + sum nbs’)

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-24

A traversal notebook (list-based)
type Notebook s = STRef s (RList s Nodeid)

mkNotebook = newSTRef RNil

memberAndInsert nb id = do
ids <- readSTRef nb
case ids of
MNil -> do t <- rCons id MNil

writeSTRef nb t
return False

MCons id’ nb’
| id==id’ = return True
| otherwise = memberAndInsert nb’ id

13

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-25

Once more …

type Notebook s = (HashTable Nodeid ())

mkNotebook = new (==) HashString

memberAndInsert nb id = do
munit <- lookup nb id
case munit of
Nothing -> do

insert nb id
return False

(Just _) -> return True

This type’s
accessor
functions all
return values in
the IO monad

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-26

Problems with Monadic Style
• We need a new versions of common functions:

mapM :: (Monad m) -> (a -> m b) -> ([a] -> m [b])
mapM f [] = return []
mapM f (x:xs) = do

a <- f x
as <- mapM f xs
return (a:as)

mapM’ :: (Monad m) -> (a -> m b) -> ([a] -> m [b])
mapM’ f [] = return []
mapM’ f (x:xs) = do

as <- mapM’ f xs
a <- f x
return (a:as)

What do these
functions look like?

14

October 31, 2006 http://www.csg.csail.mit.edu/6.827 L14-27

Monads and Ordering
• Monads aren’t inherently ordered (Id)
• But stateful computations must be ordered
• For ST and IO, at least the side-effecting

computations are ordered.
• The unsafeInterleaveIO construct

relaxes this ordering, but is impure.

• On the other hand, barriers order all
computation, including non-monadic
execution.

