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Motivation: Dataflow Graphs

A common Base Language

- to serve as target representation for 
high-level languages; 

- to serve as machine language for a highly
parallel machine.

Jack Dennis 
Computation Structures Group, MIT
during 1967-75
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Dennis' Program Graphs
Operators connected by arcs

fork function or
predicate

True gate
(False gate)
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Dataflow
Execution of an operation is enabled by
availability of the required operand values.  
The completion of one operation makes the 
resulting values available to the elements of 
the program whose execution depends on 
them. 

Dennis

Execution of an operation must not cause 
side-effect to preserve determinacy.  The 
effect of an operation must be local.
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Firing Rules: 
Functional Operators

f f
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Firing Rules: T-Gate
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The Switch Operator
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Firing Rules: Merge
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Firing Rules: Merge cont
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Some Conventions
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Some Conventions Cont.

X1 X2

T F T F
B

X1 X2

≡

X1 X2

T F
B

T F

X1 X2
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Rules To Form Dataflow 
Graphs: Juxtaposition
Given
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Rules To Form Dataflow 
Graphs: Iteration
Given

G1
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Example:
The Stream Duplicator

1-to-2 SD SD

T F NOT
T
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The Gate Operator

Lets X pass through only after C arrives.

What happens if we don't use the gate in the 
Stream Duplicator?

C

X

X
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The Stream Halver

2-to-1 SH SH

Throws away every other token.
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Determinate Graphs
Graphs whose behavior is time independent, 
i.e., the values of output tokens are uniquely 
determined by the values of input tokens.

A dataflow graph formed by repeated
juxtaposition and iteration of deterministic 
dataflow operators results in a deterministic 
graph.

Proof?
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Dataflow Operators:
Streams Functions

add(x:xs,y:ys)   =   +(x,y) : add(xs,ys)

T-gate (T:bs,x:xs)   =   x: T-gate(bs,xs)
T-gate (F:bs,x:xs)   =   T-gate(bs,xs)

merge(T:bs,x:xs,ys)   =   x: merge(bs,xs,ys)
merge(F:bs,xs,y:ys)   =   y: merge(bs,xs,ys)
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Dataflow Graphs:
A Set of Recursive Equations

NOT

I

O

T

A

B

O = T-gate (A,I) ;
A = gate (I,B) ;
B = T :  Not (A) ;

T

G. Kahn
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Domain of Sequences
Sequence: [ x1, ... , xn]

The least element:  [ ]  (aka ⊥)

The partial order (≤):  prefix order on sequences

[ ] ≤ [ x1] ≤ [ x1,x2] ≤ ... ≤ [ x1, x2, x3 ...  xn]

[ x1, x2, x3] may be approximated  by [ ] or [ x1] 
or[ x1,x2]. However,  [ x1,x2] is a better 
approximation than [ x1] or [ ] for [ x1, x2, x3]. 
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Kleene's Iterative Solution

I     [i1, i2, i3]          [i1, i2, i3]          [i1, i2, i3]

A     [  ]                    [ T ]                  [ T ] 

B     [ T ]                  [ T ]                  [ T, F ]

O     [  ]                    [  ]                   [ i1 ]

O = T-gate (A,I) ;
A = gate (I,B) ;
B = T :  Not (A) ;

Is the answer unique?

Yes, if all operators are 
monotonic and continuous!
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a monotonic operator on sequences can only 
produce more output when given more input, 
i.e., it can never retract a value that has been 
produced.

Is T-gate(B,X) monotonic ?

B ≤ B’ ⇒ T-gate(B,X) ≤ T-gate(B’,X)

The proof is straightforward by the induction 
on the length of the sequences 

Monotonicity
x ≤ y ⇒ f(x) ≤ f(y)
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Continuity

A continuous operator on sequences does not 
suddenly produce an output after consuming 
an infinite amount of input. 

Is T-gate(B,X) continuous?

B0 ≤ B1 ≤ ... ≤ Bn ≤ ... ⇒
T-gate((Ui Bi),X) = Ui T-gate(Bi,X)

The proof is straightforward by the induction 
on the length of the sequences  

f (Ui Xi)  =  Ui f (Xi) 
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Kleene’s Fixed Point Theorem

If D is partially ordered  with one least 
element (⊥) and is ω-complete, and

f : D --> D is a monotonic and continuous
function then 

Ui fi (⊥) is the least fixed point solution of f.

ω-complete means that every chain (Ui Xi ) in 
the domain has a least upper bound

⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ ...
The limit of this chain is denoted by Ui fi (⊥) 


