Motivation: Dataflow Graphs

A common Base Language

- to serve as target representation for high-level languages;
- to serve as machine language for a highly parallel machine.

Jack Dennis
Computation Structures Group, MIT
during 1967-75
Dennis' Program Graphs

Operators connected by arcs

- fork
- True gate (False gate)
- function or predicate

- merge

Dataflow

- Execution of an operation is *enabled* by availability of the required operand values.
- The completion of one operation makes the resulting values available to the elements of the program whose execution depends on them.

Dennis

- Execution of an operation must not cause *side-effect* to preserve *determinacy*. The effect of an operation must be local.
Firing Rules: Functional Operators

Firing Rules: T-Gate
The Switch Operator

Firing Rules: Merge
Firing Rules: Merge \textit{cont}

Some Conventions
Some Conventions Cont.

Rules To Form Dataflow Graphs: Juxtaposition
Rules To Form Dataflow Graphs: *Iteration*

Given

```
    G1
    ...  
    ...  
    ...  
    G1
    ...  
    ...  
```

Example:
The Stream Duplicator

```
    SD
    1-to-2
    SD
    
    T F
    T
    NOT
    
    T
```

November 28, 2006
http://csg.csail.mit.edu/6.827/
L20-13
The Gate Operator

Let X pass through only after C arrives.

What happens if we don’t use the gate in the Stream Duplicator?

The Stream Halver

Throws away every other token.

2-to-1 SH SH
Determinate Graphs

Graphs whose behavior is time independent, i.e., the values of output tokens are uniquely determined by the values of input tokens.

A dataflow graph formed by repeated juxtaposition and iteration of deterministic dataflow operators results in a deterministic graph.

Proof?

Dataflow Operators: Streams Functions

\[
\begin{align*}
\text{add}(x:xs,y:ys) & = +(x,y) : \text{add}(xs,ys) \\
\text{T-gate}(T:bs,x:xs) & = x: \text{T-gate}(bs,xs) \\
\text{T-gate}(F:bs,x:xs) & = \text{T-gate}(bs,xs) \\
\text{merge}(T:bs,x:xs,ys) & = x: \text{merge}(bs,xs,ys) \\
\text{merge}(F:bs,x:xs,y:ys) & = y: \text{merge}(bs,xs,ys)
\end{align*}
\]
Dataflow Graphs:
A Set of Recursive Equations

O = T-gate (A,I) ;
A = gate (I,B) ;
B = T : Not (A) ;

G. Kahn

Domain of Sequences

Sequence: [x₁, ... , xₙ]

The least element: [] (aka ⊥)

The partial order (≤): prefix order on sequences
[] ≤ [x₁] ≤ [x₁, x₂] ≤ ... ≤ [x₁, x₂, x₃ ... xₙ]

[x₁, x₂, x₃] may be approximated by [] or [x₁]
or[x₁, x₂]. However, [x₁, x₂] is a better
approximation than [x₁] or [] for [x₁, x₂, x₃].
Kleene's Iterative Solution

<table>
<thead>
<tr>
<th>I</th>
<th>[i1, i2, i3]</th>
<th>[i1, i2, i3]</th>
<th>[i1, i2, i3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[]</td>
<td>[T]</td>
<td>[T]</td>
</tr>
<tr>
<td>B</td>
<td>[T]</td>
<td>[T]</td>
<td>[T, F]</td>
</tr>
<tr>
<td>O</td>
<td>[]</td>
<td>[]</td>
<td>[i1]</td>
</tr>
</tbody>
</table>

O = T-gate (A, I);
A = gate (I, B);
B = T : Not (A);

Is the answer unique?
Yes, if all operators are monotonic and continuous!

Monotonicity

\[x \leq y \implies f(x) \leq f(y) \]

* a monotonic operator on sequences can only produce more output when given more input, i.e., it can never retract a value that has been produced.

* Is T-gate(B, X) monotonic?

\[B \leq B' \implies T\text{-gate}(B, X) \leq T\text{-gate}(B', X) \]

* The proof is straightforward by the induction on the length of the sequences
Continuity

A continuous operator on sequences does not suddenly produce an output after consuming an infinite amount of input.

Is \(T\text{-gate}(B,X) \) continuous?

\[
B_0 \leq B_1 \leq \ldots \leq B_n \leq \ldots \quad \Rightarrow \\
T\text{-gate}((U_i B_i),X) = U_i T\text{-gate}(B_i,X)
\]

The proof is straightforward by the induction on the length of the sequences.

Kleene’s Fixed Point Theorem

If \(D \) is partially ordered with one least element \((\perp) \) and is \(\omega\)-complete, and
\[
f : D \rightarrow D \text{ is a monotonic and continuous function then}
\]
\[
U_i f (\perp) \text{ is the least fixed point solution of } f.
\]

\(\omega\)-complete means that every chain \((U_i X_i) \) in the domain has a least upper bound

\[
\perp \leq f(\perp) \leq f(f(\perp)) \leq \ldots
\]

The limit of this chain is denoted by \(U_i f_i (\perp) \)