Well-behaved Dataflow Graphs

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Outline

• Kahnian networks and dataflow
• Streams with holes & Tagged interpretation
• Well behaved graphs
Kahnian Networks

- Computing stations connected by *unbounded*, FIFO channels
- Each station executes a **sequential program**
 - `wait(ch)`: blocking read from a channel
 - `send(x, ch)`: non blocking
 - A station either *blocks* for an input on a specific channel or *computes*

An Example

X = f(Y, Z) || T₀, T₁ = g(X) || Y = h₀(T₀) || Z = h₁(T₁)

Process f(U, V; W)

```plaintext
{ b = true;  
  While true do  
  { i := if b then wait(U) else wait(V);  
    print(i);  
    send(i, W);  
    b := not b } }
```

Process g(U, V, W)

```plaintext
{ b = true;  
  While true do  
  { i := wait(U);  
    if b then send(i, V) else send(i, W)  
    b := not b } }
```

Process h₀(U; V)

```plaintext
{ send(c, V);  
  While true do  
  { i := wait(U);  
    send(i, V) } }
```
Kahnian Networks & Dataflow

Dataflow Graphs can Express any Kahnian Network and vice versa

Determinacy

- A computing station in Kahnian network can be viewed as a monotonic and continuous function from sequences to sequences
- The least fixed point solutions characterize the I/O behavior of such stations
- Dataflow operators can have any granularity and can be expressed in any sequential language
x cannot be moved to the output because the token corresponding to T is missing.

How to model stream with “holes”?

Another Interpretation of DFGs

Streams with "holes"

Streams with missing tokens

\{v_1, v_2, \bot, v_4, \bot, v_6, \ldots\}

can be modeled by a set of tokens where tokens carry a tag designating their position in the stream

\{<1, v_1>, <2, v_2>, <4, v_4>, <6, v_6>\}
Tagged Semantics of Operators

\[\text{add}(xs, ys) = \{<i, x+y> | <i, x> \in xs, <i, y> \in ys\} \]

\[\text{T-gate}(bs, xs) = \{<k, x> | <i, T> \in bs, <i, x> \in xs, \forall j \leq i . <j, b_j> \in bs, k = \text{T-Cnt}(bs, i)\} \]

\[\text{merge}(bs, xs, ys) = \{<i, x> | <i, T> \in bs, <k, x> \in xs, \forall j \leq i . <j, b_j> \in bs, k = \text{T-Cnt}(bs, i)\} \]
\[\cup \{<i, y> | <i, F> \in bs, <k, y> \in ys, \forall j \leq i . <j, b_j> \in bs, k = \text{F-Cnt}(bs, i)\} \]

\[\text{D}_a(xs) = \{<i+1, x> | <i, x> \in xs\} \cup \{<1, a>\} \]

Ordering on Streams with Holes

- Stream with holes: \{<i, v_i>, <j, v_j>, <k, v_k>\}
- The least element: \{\} (aka \(\perp\))
- The partial order (\(\leq\)): subset order

It is easy to show that all the operators under the tagged semantics are monotonic and continuous

\[\Rightarrow \text{tagged semantics are also deterministic} \]
Tagged versus FIFO Interpretation

Theorem:
Suppose the least fixed point of a dataflow program is

\[X = \{ X_1, \ldots, X_n \} \]

in the FIFO interpretation and

\[Y = \{ Y_1, \ldots, Y_n \} \]

in the tagged interpretation, then

\[X \leq Y. \]

Proof: Based on structural induction
1. Show it holds for each operator
2. Show it holds under juxtaposition and iteration

Tagged interpretation gives more defined answers and has more parallelism
Well Behaved Dataflow Graphs

1. One token on each input arc produces exactly one token on each output arc.

2. The initial distribution of tokens on the arcs is restored.

Control Operators are not well-behaved
The Block Schema

```
x = a + b;
y = b * 7
in
(x-y) * (x+y)
```

Any acyclic interconnection of WBGs is a WBG.

The Conditional Schema

```
If p then a + b else a * a
```
Another Conditional Schema

If p then $a + b$ else $a \times a$

What is wrong with this schema?

Merge Operator is Essential for Determinacy

Suppose $g(X2)$ computes much faster than $f(X1)$. Tokens will come out in the wrong order without the merge operator.
The Loop Schema

\begin{align*}
\text{initial} & \quad x = a \\
\text{while} & \quad p(x) \quad \text{do} \\
\text{next} & \quad x = f(x) \\
\text{finally} & \quad x
\end{align*}

Well Behaved Dataflow Graphs (WBGs): Rules to form WBGs

1. Primitive operators like + and fork are WBGs (T-gate, F-gate and merge are not WBGs).
2. The block schema, i.e., an acyclic interconnection of graphs, is a WBG, if all its component graphs are WGBs.
3. The conditional schema is a WBG, if the graphs for the True side and False side are WBGs.
4. The loop schema is a WBG, if the graphs for the predicate and the body are WBGs.
Unbounded Cyclic Graphs

Unbounded number of tokens on an arc can only arise due to cycles.

Bounded Cyclic Graphs

Unbounded number of tokens on an arc can only arise due to cycles.

k-bound

sync
Bounded Cyclic Graphs

Well Behaved Schemas

Needed for resource management
New Definition of *Well Behavedness*

1. One token on each input arc produces exactly one token on each output arc.
2. The initial distribution of tokens on the arcs is restored.
3. No arc can have an unbounded buildup of tokens.

Bounded Cyclic Graphs are *Well Behaved*

- Initial number of tokens at the *gate* input determines the maximum number of tokens on any arc.
- However, loop bounding can alter the "meaning" of a graph, i.e., can cause *deadlock*.
- In general, restricting the number of tokens on an arc causes deadlock.
Can this program deadlock if the number of tokens per arc is restricted?

Static DFGs as a Base Language

- Static DFGs can express all recursively enumerable functions
- Static DFGs are not sufficient as a target for compiling high level languages. Support is lacking for:
 - procedure calls
 - data structures

⇒ Dynamic Dataflow Graphs