
1

November 30, 2006 http://csg.csail.mit.edu/6.827/ L21-1

Well-behaved Dataflow
Graphs

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

November 30, 2006 L21-2http://csg.csail.mit.edu/6.827/

Outline
• Kahnian networks and dataflow

• Streams with holes & Tagged interpretation

• Well behaved graphs

2

November 30, 2006 L21-3http://csg.csail.mit.edu/6.827/

Kahnian Networks

Computing stations connected by unbounded,
FIFO channels

Each station executes a sequential program
wait(ch): blocking read from a channel
send(x,ch): non blocking

a station either blocks for an input on a
specific channel or computes

P Q

November 30, 2006 L21-4http://csg.csail.mit.edu/6.827/

An Example

X

Y Z

T0 T1

f

g

h1h0

Process f(U,V; W)
{ b= true;

While true do
{ i := if b then wait(U)

else wait(V);
print(i);
send(i,W);
b := not b} }

Process g(U ; V,W)
{ b= true;

While true do
{ i := wait(U);

if b then send(i,V)
else send(i,W)
b := not b } }

Process hC (U ; V)
{ send(c,V);

While true do
{ i := wait(U);

send(i,V) } }

X = f(Y,Z) || T0 , T1 = g(X) || Y = h0(T0) || Z = h1(T1)

3

November 30, 2006 L21-5http://csg.csail.mit.edu/6.827/

Kahnian Networks & Dataflow

Dataflow Graphs can Express any Kahnian Network
and vice versa

X

Y Z

T0 T1

f

g
h1

h0

T F not

T F not

November 30, 2006 L21-6http://csg.csail.mit.edu/6.827/

Determinacy

A computing station in Kahnian network can
be viewed as a monotonic and continuous
function from sequences to sequences

The least fixed point solutions characterize the
I/O behavior of such stations

Dataflow operators can have any granularity
and can be expressed in any sequential
language

4

November 30, 2006 L21-7http://csg.csail.mit.edu/6.827/

Missing Tokens

T F T F

F T T

x

x

x cannot be moved to the output because the
token corresponding to T is missing.

How to model stream with “holes” ?

November 30, 2006 L21-8http://csg.csail.mit.edu/6.827/

Another Interpretation of DFGs
Streams with “holes”

Streams with missing tokens

{v1, v2, ⊥, v4, ⊥ , v6,}

can be modeled by a set of tokens where tokens
carry a tag designating their position in the
stream

{ <1, v1>, <2, v2>, <4, v4>, <6, v6> }

5

November 30, 2006 L21-9http://csg.csail.mit.edu/6.827/

Tagged Semantics of Operators
add(xs,ys) =

{<i,x+y> | <i,x> ∈ xs, <i,y> ∈ ys}

T-gate(bs,xs) =
{<k,x> | <i,T> ∈ bs, <i,x> ∈ xs,

∀ j ≤ i . <j,bj> ∈ bs , k = T-Cnt(bs,i)}

merge(bs,xs,ys) =
{<i,x> | <i,T> ∈ bs, <k,x> ∈ xs,

∀ j ≤ i . <j,bj> ∈ bs, k = T-Cnt(bs,i)}
∪ {<i,y> | <i,F> ∈ bs, <k,y> ∈ ys,

∀ j ≤ i . <j,bj> ∈ bs, k = F-Cnt(bs,i)}

Da(xs) =
{<i+1,x> | <i,x> ∈ xs} ∪ {<1,a>}

November 30, 2006 L21-10http://csg.csail.mit.edu/6.827/

Ordering on Streams with Holes
Stream with holes: { <i, vi>, <j, vj>, <k, vk> }

The least element: { } (aka ⊥)

The partial order (≤): subset order

It is easy to show that all the operators under the
tagged semantics are monotonic and continuous

⇒ tagged semantics are also deterministic

6

November 30, 2006 L21-11http://csg.csail.mit.edu/6.827/

Tagged versus FIFO
Interpretation
Theorem:

Suppose the least fixed point of a dataflow
program

X = { X1, ..., Xn } in the FIFO
interpretation

and
Y = { Y1, ..., Yn } in the tagged

interpretation
then

X ≤ Y .

Proof: Based on structural induction
1. Show it holds for each operator
2. Show it holds under juxtaposition and

iteration

Tagged inte p etation gi es mo e defined ans e s

November 30, 2006 L21-12http://csg.csail.mit.edu/6.827/

Tagged versus FIFO
Interpretation

Theorem:
Suppose the least fixed point of a dataflow program is
X = { X1, ..., Xn } in the FIFO interpretation where Xi is the
stream associated with a particular arc in the program.
Let Y = { Y1, ..., Yn } represent the fixed point of the same
program in the tagged interpretation, then

X ≤ Y .

Proof: Based on structural induction
1. Show it holds for each operator
2. Show it holds under juxtaposition and iteration

Tagged interpretation gives more defined answers
and has more parallelism

7

November 30, 2006 L21-13http://csg.csail.mit.edu/6.827/

Well Behaved Dataflow Graphs

• • •

• • •

P

Before After

• • •

• • •

P

1. One token on each input arc produces
exactly one token on each output arc.

2. The initial distribution of tokens on the arcs
is restored.

November 30, 2006 L21-14http://csg.csail.mit.edu/6.827/

Control Operators are not
well-behaved

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

⇒

Not well-behaved

8

November 30, 2006 L21-15http://csg.csail.mit.edu/6.827/

The Block Schema
a b

+ *7

- +

*

y
x

1 2

3 4

5

{x = a + b;
y = b * 7

in
(x-y) * (x+y)}

Any acyclic interconnection
of WBGs is a WBG

November 30, 2006 L21-16http://csg.csail.mit.edu/6.827/

The Conditional Schema

If p then a + b else a * a

a b

+ *

T FT F

T F

p ..

9

November 30, 2006 L21-17http://csg.csail.mit.edu/6.827/

Another Conditional Schema

If p then a + b else a * a

What is
wrong with
this schema?

+ *

T Fp

a b

November 30, 2006 L21-18http://csg.csail.mit.edu/6.827/

Merge Operator is Essential
for Determinacy

Suppose g(X2)
computes much
faster than f(X1).

Tokens will come out in the wrong
order without the merge operator.

T F T F

T F

f g f g

X2
X1

F T F T

X

X2
X1

10

November 30, 2006 L21-19http://csg.csail.mit.edu/6.827/

The Loop Schema

initial x = a
while p(x) do

next x = f(x) ;
finally x

F

p

f

x

next x

T F

T F

a

November 30, 2006 L21-20http://csg.csail.mit.edu/6.827/

Well Behaved Dataflow
Graphs (WBGs): Rules to form WBGs

1. Primitive operators like + and fork are WBGs (T-gate,
F-gate and merge are not WBGs).

2. The block schema, i.e., an acyclic interconnection of
graphs, is a WBG, if all its component graphs are
WGBs.

3. The conditional schema is a WBG, if the graphs for the
True side and False side are WBGs.

4. The loop schema is a WBG, if the graphs for the
predicate and the body are WBGs.

11

November 30, 2006 L21-21http://csg.csail.mit.edu/6.827/

Unbounded Cyclic Graphs

Unbounded number
of tokens on an arc
can only arise due
to cycles.

<n

+1

F
T F

f

+

0 1
F

T FT F

T F

November 30, 2006 L21-22http://csg.csail.mit.edu/6.827/

Bounded Cyclic Graphs

<n

+1

F
T F

f

+

0 1
F

T FT F

T F

sync
k-bound

12

November 30, 2006 L21-23http://csg.csail.mit.edu/6.827/

Bounded Cyclic Graphs

+ 1

T F

T F

F
T F

T F

f

+

0 1

Sync

k-bound

< n

F

November 30, 2006 L21-24http://csg.csail.mit.edu/6.827/

Well Behaved Schemas

f

p

T F

T F F

LoopBounded Loop

Needed for
resource
management

13

November 30, 2006 L21-25http://csg.csail.mit.edu/6.827/

New Definition of Well
Behavedness

1. One token on each input arc produces
exactly one token on each output arc.

2. The initial distribution of tokens on the arcs
is restored.

3. No arc can have an unbounded buildup of
tokens.

Before After

• • •

P

• • •

• • •

P

• • •

November 30, 2006 L21-26http://csg.csail.mit.edu/6.827/

Bounded Cyclic Graphs
are Well Behaved

Initial number of tokens at the gate
input determines the maximum number
of tokens on any arc.

However, loop bounding can alter the
"meaning" of a graph, i.e., can cause
deadlock.

In general, restricting the number of
tokens on an arc causes deadlock.

14

November 30, 2006 L21-27http://csg.csail.mit.edu/6.827/

Can this program deadlock if the
number of tokens per arc is restricted?

+1

T F

T F

F
T F

T F

+10

0
F

<4

November 30, 2006 L21-28http://csg.csail.mit.edu/6.827/

Static DFGs as a Base
Language

Static DFGs can express all recursively
enumerable functions

Static DFGs are not sufficient as a target for
compiling high level languages. Support is
lacking for:

procedure calls
data structures

⇒ Dynamic Dataflow Graphs

