
1

December 5, 2006 http://csg.csail.mit.edu/6.827/ L22-1

Dynamic Dataflow

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

December 5, 2006 L22-2http://csg.csail.mit.edu/6.827/

Static - mostly for signal processing
NEC - NEDIP and IPP
Hughes, Hitachi, AT&T, Loral, TI, Sanyo
M.I.T. Engineering model
...

Dynamic
Manchester (‘81)
M.I.T. - TTDA, Monsoon (‘88)
M.I.T./Motorola - Monsoon (‘91) (8 PEs, 8 IS)
ETL - SIGMA-1 (‘88) (128 PEs,128 IS)
ETL - EM4 (‘90) (80 PEs), EM-X (‘96) (80 PEs)

Sandia - EPS88, EPS-2
IBM - Empire
...

Dataflow Machines

Related machines:
Burton Smith’s
Denelcor HEP,
Horizon, Tera

Shown at
Supercomputing 96

Shown at
Supercomputing 91S. Sakai

Y. Kodama

EM4: single-chip dataflow micro,
80PE multiprocessor, ETL, Japan

K. Hiraki

T. Shimada

Sigma-1: The largest
dataflow machine, ETL, Japan

John Gurd

Greg Papadopoulos

MonsoonAndy
Boughton

Chris
Joerg

Jack
Costanza

2

December 5, 2006 L22-3http://csg.csail.mit.edu/6.827/

Outline
Static Dataflow Machines

Not general-purpose enough

Dynamic Dataflow Machines
As easy to build as a simple
pipelined processor

The software view
The memory model: I-structures

Monsoon and its performance

December 5, 2006 L22-4http://csg.csail.mit.edu/6.827/

Dataflow Graphs
{x = a + b;
y = b * 7

in
(x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

Values in dataflow graphs are
represented as tokens

An operator executes when all
its input tokens are present;
copies of the result token are
distributed to the destination
operators

token < ip , p , v >
instruction ptr port data

ip = 3

p = L

no separate control flow

3

December 5, 2006 L22-5http://csg.csail.mit.edu/6.827/

Static Dataflow Machine:
Instruction Templates

Each arc in the graph has a
operand slot in the program

a b

+ *7

- +

*

y
x

1 2

3 4

5

Des
tin

ati
on

 1

Des
tin

ati
on

 2

Presence bits

1
2

3
4
5

+ 3L 4L
* 3R 4R

- 5L

+ 5R
* out

Opc
od

e

Ope
ra

nd
 1

Ope
ra

nd
 2

December 5, 2006 L22-6http://csg.csail.mit.edu/6.827/

Static Dataflow Machine
Jack Dennis, 1973

<s1, p1, v1>, <s2, p2, v2>

1
2
.
.
.

Many such processors can be connected together
Programs can be statically divided among the
processor

Receive

Send

FU FU FU FU FU

Op dest1 dest2 p1 src1 p2 src2
Instruction Templates

4

December 5, 2006 L22-7http://csg.csail.mit.edu/6.827/

Static Dataflow:
Problems/Limitations

Mismatch between the model and the
implementation

The model requires unbounded FIFO token
queues per arc but the architecture provides
storage for one token per arc
The architecture does not ensure FIFO order in
the reuse of an operand slot
The merge operator has a unique firing rule

The static model does not support
Function calls
Data Structures

- No easy solution in
the static framework
- Dynamic dataflow
provided a framework
for solutions

December 5, 2006 L22-8http://csg.csail.mit.edu/6.827/

Outline
Static Dataflow Machines √

Not general-purpose enough

Dynamic Dataflow Machines ←
As easy to build as a simple
pipelined processor

The software view
The memory model: I-structures

Monsoon and its performance

5

December 5, 2006 L22-9http://csg.csail.mit.edu/6.827/

Dynamic Dataflow
Architectures

Allocate instruction templates, i.e., a frame,
dynamically to support each loop iteration
and procedure call

termination detection needed to deallocate
frames

The code can be shared if we separate the
code and the operand storage

<fp, ip, port, data>

frame
pointer

instruction
pointer

a token

December 5, 2006 L22-10http://csg.csail.mit.edu/6.827/

A Frame in Dynamic Dataflow

Program1
2
3
4
5

+

*

-

+

3

1

2

4

5

3L, 4L

3R, 4R

5L

5R

out*

a b

+ *7

- +

*

y
x

1 2

3 4

5

Need to provide storage for only one operand/operator

<fp, ip, p , v>

1

2

4
5

7

3
Frame

6

December 5, 2006 L22-11http://csg.csail.mit.edu/6.827/

Monsoon Processor
Greg Papadopoulos

Instruction
Fetch

Operand
Fetch

ip

fp+r

Network Network

Frames

op r d1,d2

Code

Form
Token

ALU

Token
Queue

December 5, 2006 L22-12http://csg.csail.mit.edu/6.827/

Temporary Registers &
Threads Robert Iannucci

Registers evaporate
when an instruction
thread is broken

n sets of
registers
(n = pipeline

depth)

Instruction
Fetch

Operand
Fetch

Network Network

Frames

op r S1,S2

Code

Form
Token

ALU

Token
Queue

Registers

Registers are also
used for exceptions &
interrupts

Robert Iannucci

7

December 5, 2006 L22-13http://csg.csail.mit.edu/6.827/

Actual Monsoon Pipeline:
Eight Stages

Instruction Fetch

Form Token

System
Queue

Registers

Network

Instruction
Memory

Effective Address

Presence Bit
Operation

Frame
Operation

Presence
bits

Frame
Memory

User
Queue

144

144

32

3

72

72 72

2R, 2W
ALU

December 5, 2006 L22-14http://csg.csail.mit.edu/6.827/

Instructions directly control
the pipeline

The opcode specifies an operation for each pipeline stage:

opcode r dest1 [dest2]

EA - effective address
FP + r: frame relative

r: absolute
IP + r: code relative (not supported)

WM - waiting matching
Unary; Normal; Sticky; Exchange; Imperative

PBs X port → PBs X Frame op X ALU inhibit
Register ops:

ALU: VL X VR → V’L X V’R , CC

Form token: VL X VR X Tag1 X Tag2 X CC → Token1 X Token2

EA WM RegOp ALU FormToken
Easy to implement;
no hazard detection

8

December 5, 2006 L22-15http://csg.csail.mit.edu/6.827/

Procedure Linkage Operators
f

get frame extract tag

change Tag 0

change Tag 0

Graph for f

change Tag 1

a1

1:

change Tag n

an

n:

...

change Tag 1

Fork

token in frame 0
token in frame 1

Like standard
call/return
but caller &
callee can be
active
simultaneously

December 5, 2006 L22-16http://csg.csail.mit.edu/6.827/

Outline
Static Dataflow Machines √

Not general-purpose enough

Dynamic Dataflow Machines √
As easy to build as a simple
pipelined processor

The software view ←
The memory model: I-structures

Monsoon and its performance

9

December 5, 2006 L22-17http://csg.csail.mit.edu/6.827/

Parallel Language Model
Global Heap of
Shared Objects

Tree of
Activation
Frames

h:g:

f:

loop

active
threads

asynchronous
and parallel
at all levels

December 5, 2006 L22-18http://csg.csail.mit.edu/6.827/

Dataflow Graphs + I-Structures + . . .

TTDA Monsoon *T

*T-Voyager

Id World
implicit parallelism

Id

10

December 5, 2006 L22-19http://csg.csail.mit.edu/6.827/

Id World people
Rishiyur Nikhil,
Keshav Pingali,
Vinod Kathail,
David Culler
Ken Traub
Steve Heller,
Richard Soley,
Dinart Mores
Jamey Hicks,
Alex Caro,
Andy Shaw,
Boon Ang
Shail Anditya
R Paul Johnson
Paul Barth
Jan Maessen
Christine Flood
Jonathan Young
Derek Chiou
Arun Iyangar
Zena Ariola
Mike Bekerle

K. Eknadham (IBM), Wim Bohm (Colorado), Joe Stoy (Oxford),...

Steve Heller

Ken TraubR.S. Nikhil Keshav Pingali David Culler

Boon S. Ang Derek ChiouJamey Hicks

December 5, 2006 L22-20http://csg.csail.mit.edu/6.827/

Data Structures in Dataflow

. . . . PP

MemoryData structures reside in a
structure store

⇒ tokens carry pointers

I-structures: Write-once,
Read multiple times or

allocate, write, read, ..., read,
deallocate
⇒ No problem if a reader
arrives before the writer at the
memory location

I-fetch

a

I-store

a v

11

December 5, 2006 L22-21http://csg.csail.mit.edu/6.827/

I-Structure Storage: Split-phase
operations & Presence bits

I-Fetch

t

<s, fp, a >

s
1

2

3

4a
a
a
a

v2

fp.ip

I-structure
Memory

• Need to deal with multiple deferred reads
• other operations: fetch/store, take/put, clear

⇓

v1

address to
be read

t

I-Fetch
<a, Read, (t,fp)>

s

split
phase

forwarding
address

December 5, 2006 http://csg.csail.mit.edu/6.827/ L22-22

Next time

Compiling Id/pH into dataflow
graphs

Monsoon Performance

