Massachusetts Institute of Technology Department of Electrical Engineering and
Computer Science 6.847 — Dataflow and Reduction Architectures

Handout # 1 September 13, 1989

Professor Arvind, NE43-210, x3-6090, arvind@abp

TA: Madhu Sharma, NE43-237, x3-4103, sharma@abp.lcs.mit.edu, sharma@athena
TA: Andrew Shaw, NE43-251, x3-8860, shaw@abp.lcs.mit.edu, ashaw@athena
Preferred Mailing Address for TAs: course@bk.lcs.mit.edu

Course Secretary: Susan Hardy, NE43-206, x3-0240, sh@abp.cs.mit.edu

Time and Place: 26-204, MW9:30-11:00

Dataflow concepts offer a new approach to building highly parallel computer systems geared to
sound concepts of program structure and language design. Our goal is to relate the problems in
designing and programming multiprocessor systems and their purported solutions in the dataflow
framework. Since dataflow languages are closely related to functional languages, we will discuss
design and implementation issues of functional languages, starting with Lambda Calculus, Com-
binatory Calculus and Term Rewriting Systems. A framework for discussing the denotational and
operational semantics of dataflow graphs will be presented. The course will concentrate on the
current research on declarative languages and dataflow architectures at MIT. We will also discuss
reduction techniques for implementing functional languages and explore the relationships between
parallel reduction and dataflow. Program examples will be given in the context of the high-level
language Id, developed at MIT by the Computation Structures Group. A more detailed list of
topics is as follows:

1. Hardware and Software Issues in Parallel Computing: Processor and memory design
to tolerate both large latency in memory accesses and to provide efficient synchronization
of processors. Multiprocessor packet communication architectures. Inadequacy of impera-
tive languages to express parallelism. Need for dynamic resource allocation to fully exploit
parallelism.

2. Id — A High Level Language for Dataflow Computation: Functional constructs—
higher-order functions, tuples, functional arrays, lists and algebraic types. Polymorphic typ-
ing and type inferencing. Limitations of functional data structures. Logical variables as
incorporated in I-structures to model array operations.

3. Dataflow Concepts: Dataflow program graphs. Determinacy of computation. Least fix-
point semantics of abstract dataflow networks. The unraveling-interpreter. Static and dy-
namic architectures. Data structure storage. Higher-order functions and demand-driven
evaluation in dataflow frame work. Compilation schemas for language control structures into
dataflow program graphs and optimizations.



6.847 Handout 1 2

4. Theoretical Issues: Foundations of functional languages. Term Rewriting Systems. The
Lambda Calculus and Combinatory forms. Typed and untyped Lambda Calculus. Ap-
plicative and normal order interpreters. Infinite data structures and higher-order functions.
Abstraction of variables to generate supercombinatory code.

5. Reduction Concepts: Combinator reduction and weak-normal forms. Wadsworth graph
reduction and mfe abstraction. Short circuiting or the G-machine approach to compiling
super combinators. Architectural requirements for parallel graph reduction.

6. Non-determinism: The need of non-determinism in expressing resource management prob-
lems. Incorporation of non-deterministic constructs such as merge and managers in functional
languages. Programming with mutable arrays.

Grading: The grades will be assigned solely on the basis of homeworks,

Please see the policy on collaboration on problem sets (Handout 2)—.|




8.847 Handout 1 3

[9]

(10}

111}
[12]

[13]

(14]

[15]

[16]

David E. Culler and Arvind. Resource Requirements of Dataflow Programs. In Proceedings 'of
the Fifteenth Annual Internaetional Symposium on Computer Architecture, Honolulu, Hawaii,

May 1988. Also: CSG Memo 280, MIT Laboratory for Computer Science, 545 Technology

Square, Cambridge, MA 02139.

David E. Culler and Gregory M. Papadopoulos. The Explicit Token Store. Journal of Par-
allel and Distributed Computing, January 1991 (to appear). {Also: CSG Memo 312, MIT
Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139).

J. B. Dennis. Data Flow Supercomputers. Computer, 13(11):48-56, November 1980.

Jack B. Dennis. First Version of a Data Flow Procedure Language. In Proceedings of the
Programming Symposium, Paris, Springer-Verlag LNCS 19, 1974. (Revised: MAC TMS61,
May 1975, Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139).

Kei Hiraki, Kenji Nishida, Satoshi Sekiguchi, Toshio Shimada, and Toshitsugu Yuba. The
SIGMA-1 Dataflow Supercomputer: A Challenge for New Generation Supercomputing Sys-
tems. Journal of Information Processing, 10(4):219-226, 1987.

R. J. M. Hughes. Super-Combinators: A New Implementation Method for Applicative Lan-
guages. In Conference Record of the 1982 ACM Symposium on Lisp and Functional Program-
ming, pages 1-10. Association for Computing Machinery, August 1982.

Thomas Johnsson. Efficient Compilation of Lazy Evaluation. In Proceedings of the ACM
SIGPLAN ’84 Symposium on Compiler Construction, pages 58—69. Association for Computing
Machinery, June 1984,

Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. In Springer-
Verlag LNCS 201: Proc. Functional Programming Languages and Computer Architecture,
Nancy, France, September 1985.

G. Kahn. The Semantics of a Simple Language for Parallel Programming. In Information
Processing 7{: Proceedings of the IFIP Congress, pages 471-475. International Federation for
Information Processing, August 1974.

J.W. Klop. Term Rewriting Systems. Technical report, Center for Mathematics and Computer
Science, Amsterdam, The Netherlands, September 1985.

Rishiyur S. Nikhil. Id World Reference Manual. Technical report, Computation Structures
Group, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139,
April 1987. Revised August 1988 by P. R. Fenstermacher and J. E. Hicks.

Rishiyur S. Nikhil. Id (Version 88.1) Reference Manual. Technical Report CSG Memo 284,
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, August
1988.

Rishiyur S. Nikhil and Arvind. Can dataflow subsume von Neumann computing? In Pro-
ceedings of the 16th. Annual International Symposium on Computer Architecture, Jerusalem,
Israel, May 29-31 1989, Also: CSG Memo 292, MIT Laboratory for Computer Science, 545
Technology Square, Cambridge, MA 02139,



6.847 Handout 1 4

(22] Rishiyur S. Nikhil and Arvind. Programming in 1d: a parallel programming language. Nom de

23]

[27]

(28]

Qwerty, Inc., 1989. (book, in preparation).

Keshav Pingali. Fixpoint Equations and Dataflow. Computation Structures Group Memo
256, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge
MA, December 1985.

Keshav Pingali and Vinod Kathail. An Introduction to the Lambda Calculus. Computation
Structures Group Memo 258, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge MA, March 1986.

Shuichi Sakai, Yoshinori Yamaguchi, Kei Hiraki, and Toshitsugu Yuba. An Architecture of a
Dataflow Single Chip Processor. In Proc. 16th Annual International Symposium on Computer
Architecture, Jerusalem, Israel, pages 46~-53, May28-June 1 1989.

K. R. Traub. Compilation as Partitioning: A New Approach to Compiling Non-Strict Func-
tional Languages. In Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, London, England, September 1989. Also: CSG Memo 291, MIT
Laboratory for Computer Science 545 Technology Square, Cambridge, MA 02139, USA.

D. A. Turner. A New Implementation Techique for Applicative Languages. Software - Practice
and Ezperience, 9:31-49, 1979.

Yoshinori Yamaguchi, Shuichi Sakai, Kei Hiraki, Yuetsu Kodama, and Toshitsugu Yuba. An
Architectural Design of a Highly Parallel Dataflow Machine. In Proc. Information Processing
89, San Francisco, USA, pages 1155-1160, August 28-September 1 1989.



Massachusetts Institute of Technology Department of Electrical Engineering and
Computer Science 6.847 — Dataflow Architectures and Languages

Handout # 3 September 17, 1990

Policy Regarding Collaboration on Problem Sets

In recent years there has been increasing concern regarding the use of old solution sets and collah-
oration between students on the problem sets in various subjects. This concern has been voiced
primarily by students who feel that they put forth substantial effort on the problem sets and yet
receive below average scores because of the collaboration and use of old solution sets that takes
place by a sizable portion of participants in the course. Collaboration and referring to old solution
sets clearly puts students who work all the problems out on their own at a disadvantage. This
handout explicitly states our policy regarding collaboration and the use of old solution sets.

1. We feel that discussion of the problem sets among course participants is a good way to learn
the course material, as long as this interaction does not focus on deriving solutions. Such
discussions should be solely for the purpose of clarifying your understanding of course material
or the problem statement. The following ground rules should be kept in mind:

o It is never acceptable to cooperate toward the solution of a problem. Examples of
“cooperation” toward a problem solution include jointly working out a solution on a
blackboard and then writing up problem sets separately, paraphrasing or copying the
solution of a classmate, and discussion of possible solutions to a problem.

¢ When you discuss the material covered in a problem set with another student, you should
make explicit mention of that person’s name at the beginning of your written solution.

o If you feel that you are completely stuck on a problem, you should turn to the teach-
ing assistants for help rather than relying upon assistance from other students (or old
solution sets).

2. Referring to old solution sets is strictly forbidden. If you have inadvertantly been exposed
to an old solution (visually or verbally), then you should explicitly state this fact at the
beginning of your problem solution.

3. When problem sets are to be worked on cooperatively in groups, grading and collaboration
policy on them will be specified on the handout.



Massachusetts Institute of Technology Department of Electrical Engineering and
Computer Science 8.847 — Dataflow Architectures and Languages

Handout # 4 ' September 17, 1990

Information About Computer Facilities

Computer Facilities

All programming in 6.847 this year will be done in Id. Id is a high-level, expression-oriented
functional language augmented with parallel data structures called I-structures and M-structures.
Details about Id will be given in the lectures and can be found in the readings, notably in Pro-
gramming in Id: a parallel progremming language and the Id Version 90 Reference Manual

There will be two compilers for Id: one which rins on the Lisp Machines, and one which runs under
UNIX. On the Lisp Machines, the programming environment for Id is called “Id World”; instructions
for using Id Warld and Lisp Machines are contained in the Id World Reference Manual The Lisp
Machines reside on the second floor of building NE43 (the Laboratory for Computer Science and
the Artificial Intelligence Laboratory). Students who do not have lobby keys to the building should
see a teaching assistant.

The UNIX Id compiler is experimental: it will produce faster code, but it will compile slower.
Because it is an experimental compiler, we may experience some minor difficulties incorporating it
into the course work. It is unlikely that we will be able to port the compiler to your own UNIX
box. We will probably run the UNIX Id Compiler from one of the machines in the Computation
Structures Group. Because this compiler and much of the course this year will be experimental,
we ask that you be patient when the inevitable problems occur.

Since the resources of the Computation Structures Group will be taxed by the requirements of this
course, we may require that all problem set files be kept on your Athena account. This will also
aid us in grading. If you do not have an Athena account, you should apply for one by going to
any Athena cluster and registering on-line. Details on how to use Athena are contained in Athena
Basics and Essential Athena. Athena workstations are located in rooms 1- 142, 2-225, 4-035, 4-167,
11-116, 16-034, 37-318, 66-080, and the fifth floor of the student center.

Electronic Mail

Electronic mail will be used extensively in the course as a means of communication between you
and the TA’s. If you receive your mail at Athena, you should learn how to use the Athena mail
handler, mh, as the Athena mail system is likely to be quite different from any other system you
have used. Information on how to use mh is contained in Essential Messages.

If you wish to contact one of the course teaching assistants, please use the course address, not his
or her personal address.



Massachusetts Institute of Technology Department of Electrical Engineering and
Computer Science 8.847 — Dataflow Architectures and Languages

Handout # 5 September 17, 1990

Problem Sets and Grading Policy

Extensions

Problem sets are due in class at 11AM on the day indicated on the problem set handout., Problem
sets turned in after that time are considered late, and will not necessarily receive any credit.

Occasionally, you may find you need extra time to do a problem set. The teaching assistant can
grant an extension of up to a week, if necessary. To receive an extension, you must ask for
one either in person or via computer mail before 11AM on the day the problem set is
due. We will he very strict about this requirement. Depending on circumstances, we may grant an
extension of less than a week. Because of the need to distribute solution sets in a timely fashion,
we usually cannot grant an extension of more than a week. For obvious reasons, no extensions will
be granted for the last problem set of the term.

All requests for extensions or questions about problem sets should be directed to one of the teaching
assistants, not to Prof. Arvind.

Grading

Your grade will be based entirely on the homework assignments. There are no exams in this course.
All assignments will be weighted equally.

We will grade programs based on the correctness of your algorithm and on your style of program-
ming. All programming ezercises will be in Id. People who have taken 6.001 will have a slight
advantage, since elements of programming style learnt in 6.001 will be very useful. Include com-
ments to explain what each section of your code accomplishes. If we cannot understand your
program, we cannot give you much credit. In the beginning of the course, we will be lenient about
the style of your Id code, but we expect you to heed any comments we make about style.

How To Turn In Your Problem Set

1. Answers to problems should be submitted in the proper sequence; t.e., answers to Problem 1
before answers to Problem 2.

2. If the problem specifically states what the name of the function should be and how it should
take its arguments, follow these instructions exactly.



3. Include output to demonstrate that your functions work properly.

4. Formatting (like INTpXor Scribe) is not necessary, and will not affect your grade in any way.
However, if your handwriting is bad, we would appreciate a typed problem set: raw text is
fine. Be reasonable.



Massachusetts Institute of Technology Department of Electrical Engineering and
Computer Science 6.847 — Dataflow Architectures and Languages

Handout # 6 September 17, 1990

Problem Set 1 — Due September 24, 1990

This problem set is intended to get you familiar with Id and Id World. We’ll concern ourselves
here only with the functional subset of Id, i.e., Id without I-structures. The solutions are not long
(no solution should be more than 20 lines of code), but those of you unfamiliar with the functional
programming style may find it a bit tricky. We strongly suggest that you start on the problem set
as soon as possible since there are only a relatively small number of Lisp machines available for
classroom use.

Problem 1 15 Points
Part a:

The composite function of two given functions f and g is defined as follows—
(fog)z = f(g=z)
Complete the following definition of compose as written in Id.
def compose £ g = ---
Part b:

Write a function repeat that given two arguments n and f, returns a function that composes f
over its single argument n times. E.g.,
(repeat 3 £) x — 2(£(£(x)))

Your function should utilize compose.
Part e:
The derivative of a function f is given by the formula:

fi(e) = L&+ d:l - (=)

Write an Id function (deriv £ dx) which returns the derivative of f. Note that deriv should
return a function.

Part d: Write an Id function (nth_deriv £ n dx) which calculates the nth derivative of f. Your
function should use repeat and deriv. How do you get around the fact that the function passed
to repeat expects only one argument, while deriv expects two arguments?

In order to test nth_deriv, write a function cube which cubes a number. What do you get for the
first, second, and third derivatives of cube for z = 5 and dz = .17 Try using different values for dz.
Does reducing the value of dz passed to nth_deriv increase the accuracy? Explain.



6.847 — Problem Set 1 9
Problem 2 20 Points

In this problem, we will study two different methods to find the root of a univariate continuous
function f, i.e., find an z such that,

f(z) = 0.
Section 1: The Newton-Raphson method

Part a:
The Newton-Raphsen Method for finding the root of a function f(z) is shown below. An initial
guess is repeatedly iterated using the following equation until it is good enough.

f(zx)

where f/(z) is the derivative of f(z).

Write a function improve_guess that given two arguments, a function f and its derivative F,
returns a function that does one Newton-Raphson iteration. E.g.,

def f x = x»x - 2;

def ff x = 2¢x;

step = improve. guess f ff;

> step 1.414 —> 1.4142136
> Tepeat 2 step 1 == 1.4188668
> repeat 4 step I = 1.4142136

Use such iterators for various functions and their derivatives along with the repeat function in
problem 1 to run a given number of iterations over an initial guess (as shown). '

Part b:

Write a function test_gen which accepts a function f as an argument. It should return a function
that given a guess z;, returns true if f{#:) is within 6 decimal places of 0 and returns false otherwise.
E.g.,

good guess? = test._gen f;

> good_guess? 1.414 — false
> good_guess? 1.4142135 = true

a :

Using the functions defined in parts a and b above, write an Id procedure £ind_root to find the
roots of a function using Newton-Raphson Method. find_root should take the function and its
derivative as arguments and return a function that finds the closest root to a given initial guess as
shown below,

def find root £ df = ...
sqrt.2 = find root £ f£f;

> sqrt.2 1 = 1.4142135
> 8qrt 2 -1 —> ~1.4142135



6.847 — Problem Set 1 3
Note - You should test your program on other multi-root functions also.

Part 2: The half-interval method In the half-interval method, we are given a function f, a
tolerance level ¢, and two points @ and & such that

fla) < 0 < f(b).

Since f is continuous, it must have at least one zero between a and b. Let z be the average of a
and b. If

f(z) >0

then f must have a zero between a and z. Similarly, if

f(z) <0

then f must have a zero between z and b. We can use this procedure to cut the interval we are
searching in half each time. When the size of the interval is less than ¢, we are done. The number
of steps is clearly:

|a -

O(tog( 1222y,

Write a function (half_interval method £ a b t) which calculates a zero of f where a, b, and ¢
are as defined above. You should use the following functions in your solution:

s (close_enough x y): Returns true iff the length of the interval defined by z and y is less
than ¢.

¢ (search f neg point pos_point): If the interval is small enough, search should return its
midpoint. Otherwise, search should call itself recursively on the proper half of the interval.

Use half_interval method to approximate x as a root of the sine (known as sin in Id) function
between 2 and 4. You must first load the transcendental library in order use trigonometric functions
in Gita. Mouse the load icon and click the middle button. When the menu pops up, mouse the
file: ‘

LIVE-0AK:>Id-world>csg>LIBRARY-90>TRANSCERDENTAL-LIBRARY.TTDAB



68.847 — Problem Set 1 4

Prohlem 3 30 Points

In this problem we will study some Integration methods. The problem is to numerically integrate
a given function f(z) over an interval [a, b).

Part a:

The Trapezoidal Rule for integration is as follows—
b
I= [ f(e)do = hif(a) + f(a+2h)

where,

Write a function trap_int with arguments f, h and a that computes the quadrature using the
trapezoidal rule above. :

Part b:

Simpson’s Rule is more accurate than the trapezoidal rule and is computed as follows—

I= g[f(a) +4f(a + k) + fla+ 2h)]

where h is as before.

Write a function simp_int with arguments f, h and a that computes the quadrature using Simp-
son’s rule.

Part ¢:

For better accuracy, the given interval of integration [a, 3] is divided into several smaller intervals.
The rule is applied to each of the smaller intervals and the results added to give the total area.
There are be several ways to partition the interval.

If the partitions are all of the same size p, where p = 24, then we get what is known as the
Compuosite rule strategy.

Write a function comp_quad with arguments f, (a,b), a gquadrature_rule and n such that A =
(b — a)/(2n) (n is the number of partitions). The function should compute the integral of f over
(a,b) by adding the areas obtained by using the quadrature_rule over each of the partitions.

Use this function to integrate simple functions (e.g., the function f in the previous problem) using
different quadrature rules and partition sizes. Compare the accuracy of the Trapezoidal rule versus
the Simpson’s rule.

Part d;

If the partitions in the above computations are not all equal and can be changed as required, then
we obtain the Adaptive Quadrature strategy.

A simple recursive adaptive quadrature method is outlined below—

1. First, the integral is calculated over the entire given interval [a, b] using the given quadrature
rule. This is the old_guess.



6.847 — Problem Set 1 5
2. The midpoint of the interval is found: z = (b — a)/2.

3. A new_guess is computed by applying the rule to {a, z] and [z, b] and adding the result.

4. The new.guess is tested against old_guess. If they agree within limits then new_guess is
returned. Otherwise, the procedure is recursively called over the two partitions and the sum
is returned.

Write a function adapt_quad with arguments f, (a,b) and a quadrature_rule that implements the
above method. Use this with the rules given above and compare the results with the Composite
strategy.

Part e:

Integrals can also be calculated using the following formula:

Ix‘/:f(z)dz=(f(a+ %)+f(a+%z-)+f(a+%)+...)*dz

An Id function integrate which uses this formula is given in chapter two of the notes. Implement
integrate in Id and test it out for various functions.

In order to get more accurate integrals, smaller values of dz need to be specified. Our goal is
to write a function which will call integrate using progressively smaller values of dz until the
calculated integral converges to an acceptably accurate estimate.

Given an initial dx and a quantity epsilon, we can do the following:

1. Calculate the integral (integrate dx a b £).
2. Calculate the integral (integrate dx/2 a b £).
3. If the two integrals differ by less than epsilon, return the interval calculated at step 2. Oth-

erwise, repeat the process with dz/2 substituted for dz.

Write a function (call_integrate dx a b £ epsilon) which implements this algorithm.

Part f: Test the different integration methods on several functions. Which strategy works best?
How do the instruction counts compare?




8.847 — Problem Set 1 6
Problem 4 315 Points

In this problem we will develop a higher order representation for vectors and matrices and write
functions to manipulate them.

Recall that Matrix multiplication is defined as follows. Given a matrix A of size n x m and another
matrix B of size m x [, it returns a new matrix C of size n x I, whose elements are defined by the

following equation—

Cij= 2 A;wBh;
k=1

In other words, an element ¢;; of the matrix C is the vector inner-product of the i-th row of matrix
A with the j-th column of matrix B.

Section 1 : Using higher-order notation

A straightforward translation into I1d code gives the following—
def matmult A B = { (lai,ual),_ = 2dbounds 4;
-;{1b2,ub2) = 2d bounds B;
def select (i,j) = vip (row i 4) (column j B);
in .
make matrix ((lai,uat),(1b2,ub2)) select };
def row i X = { _,(1x2,ux2) = 2d bounds X;
def vsel j = X[i,jl;
in
make_array (1x2,ux2) vsel };
def colum j X = { (1xi,ux1),. = 2d bounds X;
def veel i = X[i,jl;
in
make_array {1xi,uxi) vsel };

Part a:
Write the function vip that would complete the above code.

Section 2 : Efficient matrix multiplication

The problem with the above program is that in order to access a given row or a column of a matrix
as a 1-dimensional array, we have to copy it into a vector. Clearly, it is possible to write a program
that does not do any copying, but then it would not reflect the computation mechanism so clearly
as the above procedure does.

Part b:

Write an efficient version of matrix multiply, mat_mult2, that does not do any copying of rows and
columns into vectors.

tio : Ge Vi
The question is—Can we use the clean, higher-order notation and yet not lose on efficiency? The

answer lies in the way we look at a vector.

When we think of a vector, or 1-dimensional array, in a language, what we have is a data structure
that has a lower bound and upper bound, and a selection function which takes an integer ¢ within



6.847 — Problem Set 1 7

the bounds, and returns a value corresponding to that integer. We write this selection function as
A[i] for a vector A. For mathematical purposes, we don’t even require the lower and the upper
bound explicitly, instead, we only need to look at the size of the vector, i.e., the number of elements
in the vector. The indices for the selection function are assumed to start from 1 in that case.

We now define an abstraction called a generalized vector. A generalized vector would have a number
representing the size of the vector and a selection function. The generalization is that we will allow
the function to be any arbitrary function defined over the range, not just the primitive function
which selects from 1-dimensional arrays. The selection operation is to be viewed as selection-by-
position and not by index value. So an ordinary vector with a given lower and upper bound would
appear to have been normalised to lower bound 1 in the generalised vector form.

Note that the choice of keeping just the size of the generalized vector and not its actual bounds is
purely a matter of convenience. Most algebraic manipulations do not concern themselves with the
actual lower and upper bounds and use the relative positions of the elements alone, and hence the
choice.

We will represent a generalized vector as a 2-tuple containing the size and the selection function.
A few examples are shown below.

A = make.array (1i,n) fa;

gend = n,fa;

B = makematrix ((1,n),{(1,m)) fb;

genB = (n,m),fh;

dsize,lael = gend;
> Asel 2 — Af2]

Bsize,Bael = genB;

> Bsel (3,2) — B[3,4]
As shown in the examples above, it is straightforward to extend this notion of generalised vectors
to matrices and arrays of higher dimensions. The representation would be similar—a 2-tuple whose
first element would now itself be a d-tuple representing the size in each of the d dimensions and a
selector function over d-tuples as indices.

Part e:

Write a function gen_vec which creates a generalised vector out of a given vector. Take care that
its bounds are properly translated to start from 1. Similarly, write a function gen_mat that converts
a maitrix into a generalized matrix.

Note — The generalised vector does not create a copy of the given vector. It only logically reorganises
the data storage already available by changing its accessing function.

Part d:

Write functions veopy and matcopy that copy a given generalised vector (matrix) into an ordinary
vector (matrix) as shown below.

def vcopy genX (l,u) = ...;
def matcopy genX ((11,ut),(12,u2)) = ...;



6.847 — Problem Set 1 8

This is to enable you to see the contents of a generalized vector (matrix) since GITA only knows
how to print ordinary vectors (matrices).

Note — Assume that the given bounds are compatible with the size of the generalised vector (matrix).

Section 3a : Manipulating Generalised Vectors

Now we would write a library of functions to manipulate generalized vectors and matrices to solve
our original problem—to be able to do matrix multiplication using higher-order functions and still
retain the efficiency of direct methods.

Note — In the following parts you may assume that the vectors you operate upon have the correct
sizes, so there is no need of bounds checking. Also note that the code shown below is merely sug-
gestive of the naming, arity and the type of the function to be written. You are free to incorporate
any pattern-matching.

Part e:
Write the functions row_vector and column_vector which return a generalized vector that accesses
a given row (column) of a generalized matrix as shown below.

defsubst row_vector gend i = ...j

defsubst column vecter gend j = ...;
Note — Make sure the generalized vector you return has the correct size! You are advised to test
both row_vector and column_vector on non-square matrices.

Part f:

Write functions vec_add and vec_sub that return a generalised vector that represents the element
by element sum (difference) of the two given generalised vectors.

defaubst vec_add genl genB
defsubst vec_sub genl genB

Part g:

Now write an inner-product function gen_vip for generalized vectors.
defsubst gen vip genk gend = ...;

Part h:

Write a function gen_mat_vec_mult that multiplies a generalized matrix with a generalised vector
and produces another generalised vector.

defsubst genmat_vecmult genk genl = ...;
Part i:
Write a function gen_mat_mult that multiplies two generalized matrices together and produces a
third.

defsubst gen mat mult genk genB = ...;

Note — Make sure that it does not copy rows and columns out of the given matrices and it works
for non-square matrices as well.

Section 4 : Memoization in generalized vectors




68.847 — Problem Set 1 9

The concept of generalised vectors does not necessitate the use of data storage as it is clear from the
above discussion. But, still we would want to memoize the element values into ordinary vectors and
matrices, simply because repeating computation each time we select an element is too inefficient.

The point to notice is that if there is already a data storage embedded in the selector function, then
it is not necessary to create copies of it. This is where the generalized vectors win over our previous
example involving ordinary vectors. They allow the flexibility of functions while still retaining the
efficiency of data storage embedded within their selector functions.

The point can be illustrated with the following example—

def vmultl (n,Asel) {_,Bael) = { defsubst Vsel i = Asel i » Bsel i;
in
n,Vsel };

def vmult2 (n,Asel) (_,Bsel) = { defsubst Vsel i = Asel i * Esel i;
¥V = make_array (1,n) Vsel;
in
gen.vec V };

¢ = gen_vec (makearray (le,uc) fc);

c.sqrl = vmultl ¢ c;

c.sqr2 = vmult2 ¢ c;

sum_of 4powl = gen_vip c_sqri c_sqri;

sum_of _4pow2 = gen vip c_sqr2 ¢_sqr2;

It should be clear that sum_of_4powl would execute the inner multiplication for elements of c_sqr1

each time they are used. While the same information is memoized into c_sqr2 and hence is
computed only once and used as many times as desired.

It may be argued that this memoization may be costlier if, for example, the inner computation
was cheap enough, for instance in vec_add. Indeed, this flexibility of space-time trade-off is the
primary property that make the concept of generalized vectors interesting.

Part j:

Write functions 1D_memoize and 2D_memoize that simply transform a given generalized vector
(matrix) into the corresponding memoized generalized vector (matrix).

defsubst 1D memoize geni
defsubst 2D memoize geni

-
ey

1 n

-
“vsy






Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.847 — Dataflow Architectures and Languages

Handout # 6s Sept 24, 1990

Problem Set 1 — Solutions

Problem 1 15 Polnts

Part a:

The composite function of two given functions f and g is defined as follows—
(f o 9)z = f(g=)

Complete the following definition of compose as written in Id.

def compose £ g = ---

defsubst compose £ g = {fun x = £ (g x)};

Part b:

Write & function repeat that given two arguments n and f, returns a function that composes f over its single
argument n times. E.g.,

(repeat 3 ) x —> £(£{£(x)))
Your function should utilise compose.

defsubst repeat 0 f = {fun x = x}
|..repeat n £ = compose £ (repeat (n-1) £);

t e
The derivative of a function f is given by the formula:

fi(z) = (= +dz) — f!z!

dz

Write an Id function (deriv £ dx) which returns the derivative of f. Note that dexriv should return a function.




8.847 — Problem Set 1 - Solutions 2

def deriv f dx =
{fun x = ((f (x + d&x)) - (£ x))/ dx};

Part d: Write an Id function (nth deriv £ n dx) which calculates the nth derivative of f. Your function should use
repeat and deriv. How do you get around the fact that the function passed to repeat expects only one argument,
while dexiv expects two arguments?

In order to test nth.deriv, write a function cube which cubes a number. What do you get for the first, second, and
third derivatives of cube for z = 5 and dz = .17 Try using different values for dz. Docs reducing the value of dz
passed to nth deriv increase the accuracy? Explain.

def nth_deriv f n dx =
((repeat n {fun £ = deriv f dx}) £);

Problem 2 20 Points
In this problem, we will study two different methods to find the root of a univariate continuous function f, i.e., find
an z such that,

f(z) =0
Section 1: The Newton-Raphson method

Part a:

The Newton-Raphson Methed for finding the root of a function f(z) is shown below. An initial guess is repeatedly

iterated using the following equation until it is good enough. ’
f(2s)

Thyl = Tp — _f’(z;)

where f'(z) is the derivative of f(z).

Write a function improve_guess that given two arguments, a function f and its derivative f', returns a function that
does one Newton-Raphson iteration. E.g.,

def £ x = x*x - 2;

def £f x = 2%x;

step = improve_guess f ff;

> step 1.414 —> 1.4142136
> repeat 2 step 1 ==> 1.4100668
> repeat 4 step 1 = 1.4142136

Use such iterators for varicus functions and their derivatives along with the repeat function in problem 1 to run &
given number of iterations over an initial guess (as shown).

defsubst improve _guess f df =
{ defsubst iteration x = x - (f x)/(df x);
in
iteration};



6.847 — Problem Set 1 — Solutions 3

Part b:

Write a function test_gen which accepts a function f as an argument. It should return a function that given a guess
Ty, returns true if f(z,) is within 6 decimal places of 0 and returns false otherwise. E.g.,

good _guess? = test _gen I;

> good _guess? 1.414 — false
> good.guess? 1.4142136 — true

defsubst test_gen f =
{ defsubst test x = abs (f x) < 1le-6;
in
testl};

Part ¢:

Using the functions defined in parts a and b above, write an Id procedure £ind_root to find the roots of a function
using Newton-Raphson Method. find, root should take the function and its derivative as arguments and return a
function that finds the closest root to a given initial guess as shown below.

def find yoot £ &f = ...

sqrt 2 = find root f ff;
> sqrt_2 1 —> 1.4142135
> sqrt.2 -1 — -1.4142135

Note - You should test your program on other multi-root functions also.

defsubst find_root f df =
{ iterator = improve_guess f df;
tester = test_gen f;
defsubst root x = if (tester x) then x
else root (iterator x);
in
rootl};

Part 2: The half-interval method In the half-interval method, we aze given a function §, a tolerance level ¢, and
two points a and b such that

f(a) <0 < f(3)-

Since f is continuous, it must have at least one sero between ¢ and b. Let z be the average of a and b. If



6.847 — Problem Set 1 — Solutions 4

Flz)>0
then f must have a sero between a and 2. Similarly, if
flz) <0

then f must have a sexo between z and b. We can use this procedure to cut the interval we are searching in half each
time. When the size of the interval is less than t, we are done. The number of steps is cleazly:

oltog(22y).

Write » function (half_interval method £ a b t) which calculates a zero of f where a, b, and t arc as defined
above. You should use the following functions in your solution:

e (close_enough x y): Returns true iff the length of the interval defined by z and y is less than 2.

o (seaxch f neg point pos_point): If the interval is small enough, search should return its midpoint. Oth-
erwise, search should call itself recursively on the proper half of the interval.

Use half_intervalmethod to approximate = as a root of the sine (known as sin in Id) function between 2 and 4.
You must first load the transcendental library in order use trigonometric functions in Gita. Mouse the load icon and
click the middle button. When the menu pops up, mouse the file:

LIVE-0AX:>Id-world>cag>LIBRARY~-90>TRANSCENDENTAL-LIBRARY.TTDAB

def half_interval _method f a b t =
{def close_enough x y =
(abs (x - y)) < t;
def search f neg_point pos_point =
{midpoint = (neg_point + pos_point)/2.0

in
if close_enough neg_point pos_point then
midpoint
else
{test_value = f midpoint
in

if test_value > 0 then
search f neg_point midpoint
else
if test_value < O then
search f midpoint pos_point
else midpoint}};
a_value = £ a;



6.847 — Problem Set 1 — Solutions 5

b_value = b
in
it (a_value < 0) and (b_value > 0) then
search f a b
else
if (a_value > 0) and (b_value < 0) then
search £ b a
else
9999.0 Y% an error value

¥

Problem $ 30 Points

In this preblem we will study some Integration methods. The problem is to numerically integrate a given function
f(z) over an interval [a,b].

Bart a:
The Trapesoidal Rule for integration is as follows—

b
1= [ Herde = is(e) + Flo-+ 20)

where,
b—a
2
Write & function trap_int with arguments f, h and a that computes the quadrature using the trapesoidal rule
above.

h=

defsubst trap_int £ h a = ha(f a + £ (a+2#h));

Part b:

Simpson’s Rule is more accurate than the trapesoidal rule and is computed as follows—

I=215(a) +4f(a+ W)+ f(a+20)

where h is as before.

Write a function simp_int with arguments f, 5 and a that computes the quadrature using Simpson’s rule.

defsubst simp_int £ h a = h*(f a + 4.0 # £ (a+h) + ¢ (a+2.0%h))/3.0;



6.847 — Problem Set 1 — Solutions 6

Part c:

For better accuracy, the given interval of integration [a, b] is divided into several smaller intervals. The rule is applied
to each of the smaller intervals and the results added to give the total azea. There are be several ways to partition
the interval.

If the partitions are all of the same size p, where p= 2h, then we get what is known as the Composite rule strategy.
Write a function comp_quad with arguments f, (a,b), & quadrature_rule and n such that h = (b — a)/(2n) (n is the

number of partitions). The function should compute the integral of f over {(a,b) by adding the areas obtained by
using the guadrature_rule over each of the partitions.

Use this function to integrate simple functions (e.g., the function f in the previous problem) using different quadrature
rules and partition sises. Compare the accuracy of the Trapesoidal rule versus the Simpson’s rule.

defsubst comp_quad £ (a,b) r n =
{h = (b-a)/(2.0%n);
defsubst sum s x = if abs (x-b)<le-6 then s
else sum (s + r £ h x) (x+2.0%h);
in
sum 0.0 a};

Bart d:
If the partitions in the above computations are not all equal and can be changed as required, then we obtain the

Adaptive Quadrature strategy.

A simple recursive adaptive quadraiure method is outlined below—

1. First, the integral is calculated over the entire given interval [a,b] using the given quadrature rule. This is the
old_gueas.

2. The midpoint of the interval is found: = = (b— a)/2.
3. A new_guess is computed by applying the rule to [a,z] and [z, 3] and adding the result.

4. The new.guess is tested against old_guess. If they agree within limits then new_guess is returned. Otherwise,
the procedure is tecursively called over the two partitions and the sum is returned.

Write a function adapt_quad with arguments f, (a,b) and a quadrature_rule that implements the above method. Use
this with the rules given above and compare the results with the Composite strategy.

defsubst adapt_quad f (a,b) r =
{ h = (b-a)/2.0;

old_guess = r £ h a;

x = a+h;

new_guess = r £ (h/2.0) a + r £ (h/2.0) x;

in
if abs (new_guess-old_guess) < le-2 then new_guess
else adapt_quad f (a,x) r + adapt_quad f (x,b) r};



8.847 — Problem Set 1 — Solutions

T

Part e:
Integrals can also be calculated using the following formula:

' dz 3dz 5dz
I= j foyde = (fla + B2y + fla+ )+ fla+ T H )0
a
An Id function integrate which uses this formula is given in chapter two of the notes. Implement integrate in 1d
and test it out for various functions. ' . .
alues of dz need to be specified. Our goal is to write a function which

i als, smaller v
In order to get more accurate integrals, calculated integral converges to an acceptably

will call integrate using progressively smaller values of d= until the
accurate estimate.
Given an initial dz and 8 quantity epsilon, we can do the following:

1. Calculate the integral (integrate dax a b 1).

2. Calculate the integral (integrate dx/2 a b 1). .
3. If the two integrals differ by less than epsilon, return the interval calculated at step 2. Otherwise, repeat the
process with dz/2 substituted for dz.

Write » function (call.integrate dr a b £ epsilon) which implements this algorithm.

def call_integrate dx a b £ epsilon =
{half_dx = dx/2.0;
typeof integral_ 1l = F;
integral .l = integrate dx a b £;
integral_2 = integrate half dx a b £
in
if abs (integral_1 - integral_2) < epsilon then
integral 2
else

call_integrate half_dx a b f epsilon};

Part f: Test the different integration methods i i
Bart & Teab the dif ‘) gr ods on several functions. Which strategy works best? How do the

Problem 4

35 Points

In this problem we will develop a hi; .
ulate thean. P a higher order representation for vectors and matrices and write functions to manip-

Recall that Matrix multiplication i

plication is defined as follows. Giv matrix 3

mx I, it : . . en & matrix 4 of sise n x m and an : .
it returns a new matrix C of sise n x I, whose elements are defined by the following eq::?i::mw B ol sise

Cij= ZAi.hBl,j

bl
In other words, an element ¢; matri
» ¢;i; of th i :
column of satuis B, 5 e matrix C is the vector inner-product of the i-th row of matrix 4 with the j-th

Section 1 : Using hl;her-order notation

A straightforward translation into Id code gives the following—



8.847 — Problem Set 1 ~ Solutions 8

def matwult 4 B = { (lal,ua1),. = 2dbounds i;
-+ {1b2,ub2) = 2d bounds B;
def select (i,j) = vip (row i A) (colummn j B);
in
make matrix ((1ai,ual),(1b2,ub2)) select };
def row i X = { _,(1x2,ux2) = 2d bounds I;
def vsel j = X[i,jl;
in
make.array (1x2,ux2) vsel };
def columm j X = { (1x1,ux1),. = 2d bounds IX;
def vsel i = X[i,j];
in
make array (1lxi,uxi) vsel };

Part a;

Write the function vip that wonld complete the above code.

defsubst vip A B =
{ la,ua = bounds A;

typeof A = 1d_array F;

typeof B = 1d_array F;

defsubst sum 8 i = if i>ua then s
else sum (s+A[i]*B[i]) (i+1);

in
sum 0.0 la};

Section 2 : Efficient matrix multiplication

The problem with the above program is that in order to access a given row or a column of a matrix as a 1-dimensional
array, we have to copy it into a vector. Clearly, it is possible to write a program that does not do any copying, but
then it would not reflect the computation mechanism so clearly as the above procedure does.

Part b:
Write an efficient version of matrix multiply, mat_mult2, that does not do any copying of rows and columns into
vectors.

defsubst mat_mult2 A B =

{ (lai,ual), (la2,ua2) = 2d_bounds A;
_,(1b2,ub2) = 2d_bounds B;
defsubst vip i j 8 k = if k>ua2 then s

else vip i j (s+Ali,k]*B[k,jl) (k+1);
defsubst select (i,j) = vip i j 0 la2;
in

make matrix ((lal,ual),(1b2,ub2)) select};



6.847 ~ Problem Set 1 — Solutions 9

Section 8 : Generalised Vectors

The question is—Can we use the clean, higher-order notation and yet not lose on efficiency? The answer lies in the
way we look at a vector.

When we think of a vector, or 1-dimensional array, in a language, what we have is a data sttucture that has a lower
bound and upper bound, and a selection function which takes an integer s within the bounds, and returns a value
corresponding to that integer. We write this selection function as A[1] for a vecior A. For mathematical purposes, we
don't even require the lower and the uppez bound explicitly, instead, we only need to look at the sise of the vector,
i.e., the number of elements in ithe vector. The indices for the selection function are assumed to start from 1 in that
case.

We now define an abstraction called & generalized vector. A generalized vector would have a number representing the
sise of the vector and a selection function. The generalisation is that we will allow the fanction to be any arbitrary
function defined over the range, not just the primitive function which selects from 1-dimensional arrays. The selection
operation is to be viewed as selection-by-position and not by index value. So an ordinary vector with a given lower
and upper bound would appear to have been normalised to lower bound 1 in the generalised vector form.

Note that the choice of keeping just the size of the generalised vector and not its actual bounds is purely a matter of
convenience. Most algebraic manipulations de not concern themselves with the actual lower and upper bounds and
use the relative positions of the elements alone, and hence the choice.

We will represent a generalised vector as a 2-tuple containing the sise and the selection function. A few examples are
shown below.

A = make.array (1,n) fa;
gend = n,fa;
B = makematrix ((i,n),(1,m)) fb;
genB = (n,m),th;
Asize,Asel = geni;
> Asel 2 —> A[2]
Baize,Bsel = genB;
> Bsel (3,4} — B[3,4]
As shown in the examples above, it is straightforward to extend this notion of generalised vectors to matrices and

arrays of higher dimensions. The representation would be similar—a 2-tuple whose first element would now itself be
a d-tuple representing the sise in each of the d dimensions and » selector function over d-tuples as indices,

Part ¢:

Write a function gen_vec which creates a generalised vector cut of a given vector. Take care that its bounds are
properly translated to start from 1. Similarly, write a function gen_mat that converts a matrix into a generalised
matrix.

Note — The generalised vector does not create a copy of the given vector. It only logically reorganises the data storage
already available by changing its accessing fanction.

defsubst gen_vec X =
{ 1x,ux = bounds X;
typeof X = 1d_array F;
defsubst sel i = X[1x+i-1];
in



6.847 — Problem Set 1 — Solutions 10

(ux-1x+1),80l};

defsubst gen_mat A =
{ (11,u1),(12,u2) = 2d_bounds A;
defsubst sel (i,j)} = A[1l1+i-1,12+j-1];
in
(ul-11+1,u2-12+1),sel};

Part d:
Write functions vcopy and matcopy that copy 8 given generalised vector (matrix) into an ordinary vector {matrix) as
shown below.

def vcopy genX (1l,u) = ...;

def matcopy genX ((11,u1),(12,u2)) = ...;
This is to enable you to see the contents of a generalised vector (matrix) since GITA only knows how to print ordinary
vectors (matrices).

Note - Assume that the given bounds are compatible with the sise of the generalised vector (matrix).

defsubst vcopy (n,f) (1,u) =
{array (1,u)
| [1+4i-1] = £ i || i <- 1 to n};

defsubst hta.tcopy ((n,m),*) ({11,u1),(12,u2)) =
{matrix ((11,ul),(12,u2))
| [11+i-1,12+j-1] = £ (i,j) |l 1 <- 1 ton & j <~ 1 to m};

Section 3a : Manipulating Generalised Vectors

Now we would write a library of functions to manipulate generalised vectors and matrices to solve our original
problem—to be able to do matrix multiplication using higher-order functions and still retain the efficiency of direct

methods.

Note — In the following parts you may assume that the vectors you operate upon have the correct sises, so ihere is
no need of bounds checking. Also note that the code shown below is mexely suggestive of the naming, arity and the
type of the function to be written. You are free to incorporate any pattern-matching.

Part e:
Write the functions row_vector and column_vector which return a generslized vector that accesses a given row
(column) of a generalized matrix as shown below.



