
ASIC Implementation of a Two-Stage MIPS Processor

6.884 Laboratory 2

February 22, 2005 - Version 20050225

In the first lab assignment, you built and tested an RTL model of a two-stage pipelined MIPS
processor. In the second lab assignment, you will be using various commercial EDA tools to
synthesize, place, and route your design. After producing a preliminary ASIC implementation, you
will attempt to optimize your design to increase performance and/or decrease area. The primary
objective of this lab is to introduce you to the tools you will be using in your final projects, as
well as to give you some intuition into how high-level hardware descriptions are transformed into
layout.

The deliverables for this lab are (a) your optimized Verilog source and all of the scripts necessary to
completely generate your ASIC implementation, and (b) a short one-page lab report (see Section 5
for details on exactly what you need to turn in). The lab assignment is due via CVS at the start
of class on Monday, February 28.

Before starting this lab, it is recommended that you revisit the Verilog model you wrote in the
first lab. Take some time to clean up your code, add comments, and enforce a consistent naming
scheme. You will find as you work through this lab assignment that having a more extensive module
hierarchy can be very advantageous; initially we will be preserving module boundaries throughout
the toolflow which means that you will be able to obtain performance and area results for each
module. It will be much more difficult to gain any intuition about the performance or area of
a specific assign statement or always block within a module. Thus you might want to consider
breaking your design into smaller pieces. For example, if your entire ALU datapath is in one
module, you might want to create separate submodules for the adder/subtracter unit, shifter unit,
and the logic unit. Unfortunately, preserving the module hierarchy throughout the toolflow means
that the CAD tools will not be able to optimize across module boundaries. If you are concerned
about this you can explicitly instruct the CAD tools to flatten a portion of the module hierarchy
during the synthesis process. Flattening during synthesis is a much better approach than lumping
large amounts of Verilog into a single module yourself.

Figure 1 illustrates the 6.884 ASIC toolflow we will be using for the second lab. You should already
be familiar with the simulation path from the first lab. We will use Synopsys Design Compiler to
synthesize the design. Synthesis is the process of transforming a higher-level behavioral or dataflow
model into a lower gate-level model. For this lab assignment, Design Compiler will take your RTL
model of the MIPS processor as input along with a description of the standard cell gate library, and
it will produce a Verilog netlist of standard cell gates. Although the gate-level netlist is at a low-level
functionally, it is still relatively abstract in terms of the spatial placement and physical connectivity
between the gates. We will use Cadence Encounter to place and route the design. Placement is
the process by which each standard cell is positioned on the chip, while routing involves wiring
the cells together using the various metal layers. Notice that you will be receiving feedback on
the performance and area of your design after both synthesis and place+route - the results from
synthesis are less realistic but are generated relatively rapidly, while the results from place+route

6.884 Lab Assignment 2, Spring 2005 2

are more realistic but require much more time to generate. Place+route for your two-stage MIPS
processor will take on the order of 15 minutes, but for your projects it could take up to an hour.

Timing
Area

Timing
Area

Verilog
Source

Design Compiler VCS

VirSim Test Scripts

SMIPS Assembler

Encounter

Gate
Level
Netlist

Std
Cell
Lib

Design Vision

Layout

Encouter GUI

Func
Sim

Test
Inputs

ASM
Source
Code

Test
Outputs

Figure 1: 6.884 Toolflow for Lab 1 and Lab 2

1 Setup

For the second lab assignment you will continue to work with your mips2stage CVS project. We
recommend that you start with a fresh checkout for the second lab assignment. You can use the
following CVS command to checkout your project.

% cvs checkout 2005-spring/<username>/mips2stage

You will need to update the makefiles and the config files in your project in order to be able to
use the synthesis and place+route toolflow. We will be distributing harnesses for labs in the locker
from now on so you will not be using the export command as you did in the first assignment.
Instead copy the mips2stage harness tarball into a temporary directory and untar it. Then copy
the various config, makefiles, and tests into your project as you see fit. You can get the tarball and
untar it with the following commands.

6.884 Lab Assignment 2, Spring 2005 3

% mkdir temp

% cd temp

% tar -xzvf /mit/6.884/lab-harnesses/mips2stage-harness.tgz

If you did not make any changes to the makefiles and the mips2stage.mk make fragment (besides
listing your Verilog source files and assembly test files), then you might want to directly overwrite
these files with the new versions using the following command.

% pwd

.../2005-spring/<username>/mips2stage

% tar --overwrite -xzvf /mit/6.884/lab-harnesses/mips2stage-harness.tgz

You will need to modify config/mips2stage.mk to correctly list your Verilog source files and any
additional assembly test files. The new infrastructure includes makefile targets for synthesis and
place+route as well as additional scripts that these tools will need. The rules for building tests are
now make fragments in the config directory. It is important to note that the mips2stage.mk make
fragment now separates the Verilog test harness from the Verilog RTL. This is because the Verilog
test harness should not be used as input into the synthesis and place+route tools. Please list all of
your Verilog source (not just the toplevel file) and also correctly identify the toplevel RTL module
(which is most likely mips cpu).

The mips2stage.mkmake fragment lists five scripts which are used by the synthesis and place+route
tools. The default mips2stage.mk make fragment uses the config/template* scripts, but you are
free to point your mips2stage.mk to your own scripts if you want to customize them.

Before beginning the second lab, you should rerun your tests just to verify that your model is still
functionally correct. You can do this with the following commands.

% pwd

.../2005-spring/<username>/mips2stage

% mkdir build

% cd build

% ../configure.pl ../config/mips2stage.mk

% make run-tests

We will be using the two-stage MIPS processor found in the examples directory of CVS throughout
this document to illustrate various concepts.

2 Synthesizing the Two-Stage MIPS Processor

Synthesis is the process of transforming a higher-level behavioral or dataflow model into a lower
gate-level model (see slides from Lecture 5 for more on synthesis). We will be using Synopsys Design
Compiler to perform this transformation. We will be running Design Compiler in a subdirectory of
your build directory to keep things organized so to start the Design Compiler shell use the following
commands.

6.884 Lab Assignment 2, Spring 2005 4

% pwd

.../2005-spring/<username>/mips2stage/build

% mkdir synth

% cd synth

% dc_shell-xg-t

Initializing...

dc_shell-xg-t>

You are left at the Design Compiler shell prompt from which you can can execute various commands
to load in your design, specify constraints, synthesize your design, print reports, etc. You can get
more information about a specific command by entering man <command> on the dc shell-xg-t

prompt. We will now execute some commands to setup your environment.

dc_shell-xg-t> lappend search_path ../../verilog

dc_shell-xg-t> define_design_lib WORK -path "work"

dc_shell-xg-t> set link_library \

[list /mit/6.884/libs/tsmc/130/lib/db/tcb013ghpwc.db]

dc_shell-xg-t> set target_library \

[list /mit/6.884/libs/tsmc/130/lib/db/tcb013ghpwc.db]

These commands point to your Verilog source directory, create a Synopsys design directory, and
point to the standard libraries we will be using for this class. You can now load your Verilog design
into Design Compiler with the analyze and elaborate commands. Executing these commands
will result in a great deal of log output as the tool elaborates some Verilog constructs and starts
to infer some high-level constructs. Try executing the commands as follows.

dc_shell-xg-t> analyze -library WORK -format verilog { ../../verilog/mips_cpu.v }

dc_shell-xg-t> elaborate mips_cpu -architecture verilog -library WORK

Obviously, you might need to use a different filename depending on your exact naming scheme.
You may get some errors if the tool has trouble synthesizing your design. You may have used
some Verilog constructs which are not synthesizable and thus you will need to make some changes.
Please make a note of what changes were required for your lab report. You will probably also
get some warnings. Eliminating all of the warnings is not necessary, but they can reveal common
mistakes so review them carefully. Before you can synthesize your design, you must specify some
constraints; most importantly you must tell the tool what the target clock period is. The following
commands tell the tool that the pin named clk is the clock and that your desired clock period
is 7 nanoseconds. If you named your clock something different than clk you will need to use the
correct name. You should set the clock period constraint carefully. If the period is unrealistically
small then the tools will spend forever trying to meet timing and ultimately fail. If the period is
too large the tools will have no trouble but you will get a very conservative implementation.

dc_shell-xg-t> create_clock clk -name ideal_clock1 -period 7

dc_shell-xg-t> compile

It will take a few minutes as Design Compiler performs the synthesis and then it will display some
output similar to what is shown in Figure 2. Each line is an optimization pass. The area column

6.884 Lab Assignment 2, Spring 2005 5

ELAPSED WORST NEG TOTAL NEG DESIGN

TIME AREA SLACK SLACK RULE COST ENDPOINT

--------- --------- --------- --------- --------- -------------------------

0:01:00 103628.0 0.00 0.0 2.1

0:01:07 76941.4 1.15 190.4 1.3

0:01:12 77214.7 0.76 23.5 1.6

0:01:22 77360.7 0.35 24.6 1.1

0:01:27 77499.9 0.00 0.0 0.0

Figure 2: Output from the Design Compiler compile command

is in units specific to the standard cell library, but for now you should just use the area numbers
as a relative metric. The worst negative slack column shows how much room there is between the
critical path in your design and the clock edge. A positive number means your design is faster than
the constrained clock period by that amount, while a negative number means that your design did
not meet timing and is slower than the constrained clock period by that amount. Total negative
slack is the sum of all negative slack across all endpoints in the design - if this is a large negative
number it indicates that not only is the design not making timing, but it is possible that many
paths are too slow. If the total negative slack is a small negative number, then this indicates that
only a few paths are too slow. The design rule cost is a indication of how many cells violate one of
the standard cell library design rules; these violations can be caused by gates which have too large
of a fanout (larger numbers are worse). Figure 2 shows that on the first iteration, the tool makes
timing but at a high area cost, so on the second iteration it optimizes area. On the third through
fifth iterations the tool is trying to further reduce the area and design rule cost while still making
timing. There is no point in synthesizing an implementation which is faster than the constrained
clock period, so the tool trades some performance for decreased area and design rule cost. You will
probably get a warning similar to the one shown below about a very high-fanout net.

Warning: Design ’mips_cpu’ contains 1 high-fanout nets.

A fanout number of 1000 will be used for delay

calculations involving these nets. (TIM-134)

Net ’clk’: 1097 load(s), 1 driver(s)

The synthesis tool is noting that the clock is driving 1097 gates. Normally this would be a serious
problem, and it would require special steps to be taken during place+route so that the net is
properly driven. However, this is the clock node and we already handle the clock specially by
building a clock driver and H-tree during place+route so there is no need for concern.

We can now use various commands to examine timing paths, display reports, and further optimize
our design. Entering in these commands by hand can be tedious and error prone, plus doing
so makes it difficult to reproduce a result. Thus we will mostly use TCL scripts to control the
tool. Even so, using the shell directly is useful for finding out more information about a specific
command or playing with various options. We will use the template.sdc, template-syn.setup,
and template-syn.tcl scripts located in the config directory as templates for the scripts we feed
into Design Compiler. The makefile takes care of substituting the name of your toplevel module,

6.884 Lab Assignment 2, Spring 2005 6

Verilog source, and other options into these templates and then copying then into the Design
Compiler working directory. You should feel free to modify these scripts, but do so in the config

directory, not in the build directory. Remember that everything in the build directory should be
able to be generated - even the various tool scripts. If you look in the templates you will see
NAME style tokens - these are replaced by the makefile so avoid changing them. Spend a few

minutes taking a look through the scipts. The template.sdc script is of particular importance,
since this is where you specify various timing constraints for your design. The create clock line
sets a constraint on the clock period and Design Compiler will do its best to produce a design
which meets this constraint. To use the makefile to perform a synthesis run first exit the Design
Compiler shell with the exit command; then return to the build directory and use the following
commands (we use a make clean to remove the synth directory you were previously working in).

% pwd

.../2005-spring/<username>/mips2stage/build

% make clean

% make synth

When the synthesis is done, it will write the final synthesized Verilog to a file called synthesized.v

in the synth directory. Take a look through this file to get a feel for what a gate-level netlist looks
like. The synthesis script will also write several reports in the synth directory which can be used to
learn more about the area and performance of your synthesized design. These files include dc.log,
synth area.rpt, and synth timing.rpt. The dc.log contains the same output you saw on the
console and there can be some valuable information in it on what types of structures were inferred
from the Verilog source. Figure 3 illustrates a fragment from the synth area.rpt report. The
report shows how much area is required for each of the hierarchical instances, and it also shows
which standard cells were used to actually implement a given module. For example, we can see
that the branch tests module was implemented using xor and or gates. The modules shown in all
capitals are the standard cells and more information about these gates can be found in the standard
cell databook located at /mit/6.884/doc/tsmc-130nm-sc-databook.pdf. Use the databook to
determine the function of the the ND2XD2 cell and the difference between the four types of xor
gates. The Verilog source for the branch tests module is shown below. Can you guess what logic
structure the synthesizer built to implement the module? This is a good example of how a more
extensive module hierarchy can help give you insight into the synthesizer results.

module branch_tests (input [31:0] in0, in1, output beq, bsign);

assign beq = (in0 == in1);

assign bsign = in0[31];

endmodule

Let’s look closer at the area breakdown for the toplevel module. Notice that the execution unit
accounts 86% of the total area. The area breakdown for the execution unit (not shown in the
figure) reveals that the register file alone accounts for almost 60% of the total area and that most
of this area is due to 992 D flip-flops (31 registers which are each 32 bits wide) and two large 32
input muxes. The flip-flops include enable signals for the write port and the two muxes implement
the two read ports. This is a very inefficient way to implement a register file, but it is the best the
synthesizer can do. Real ASIC designers rarely synthesize memories and instead turn to memory

6.884 Lab Assignment 2, Spring 2005 7

**

Report : reference

Design : mips_cpu

Version: V-2004.06-SP2

Date : Mon Feb 21 20:54:02 2005

**

Reference Library Unit Area Count Total Area Attributes

BUFFD0 tcb013ghpwc 5.092200 1 5.092200

DFQD2 tcb013ghpwc 27.158400 1 27.158400 n

control 916.596130 1 916.596130 h

cp0 2430.677002 1 2430.677002 h, n

exec 108644.335938 1 108644.335938 h, n

fetch 13674.268555 1 13674.268555 h, n

Total 6 references 125698.125000

**

Report : reference

Design : mips_cpu/exec_unit/btests (branch_tests)

Version: V-2004.06-SP2

Date : Mon Feb 21 20:54:02 2005

**

Reference Library Unit Area Count Total Area Attributes

BUFFD0 tcb013ghpwc 5.092200 18 91.659596

NR2XD2 tcb013ghpwc 15.276600 1 15.276600

OR4D1 tcb013ghpwc 11.881800 10 118.817997

XOR2D0 tcb013ghpwc 13.579200 24 325.900795

XOR2D1 tcb013ghpwc 13.579200 6 81.475199

XOR2D2 tcb013ghpwc 15.276600 1 15.276600

XOR2D4 tcb013ghpwc 28.855801 1 28.855801

Total 7 references 677.262573

Figure 3: Example fragment from the synth area.rpt

generators. A memory generator is a tool which takes an abstract description of the memory block
as input and produces a memory in formats suitable for various tools. Memory generators use
custom cells and procedural place+route to achieve an implementation which can be an order of
magnitude better in terms of performance and area than synthesized memories. Later in the course
we will have a simple memory generator for you to use, but for now simply begin to appreciate the
negative impacts of a synthesized register file.

Figure 4 illustrates a fragment of the timing report found in synth timing.rpt. The report lists
the critical path of the design. The critical path is the slowest logic path between any two registers
and is therefore the limiting factor preventing you from decreasing the clock period constraint

6.884 Lab Assignment 2, Spring 2005 8

Point Incr Path

--

clock ideal_clock1 (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

exec_unit/ir_reg[26]/CP (DFQD2) 0.00 # 0.00 r

exec_unit/ir_reg[26]/Q (DFQD2) 0.27 0.27 f

exec_unit/ir[26] (exec) 0.00 0.27 f

control_unit/ir[26] (control) 0.00 0.27 f

...

control_unit/cs[9] (control) 0.00 1.37 f

exec_unit/csig[9] (exec) 0.00 1.37 f

exec_unit/alu_b_mux/sel[1] (mux4_width32_1) 0.00 1.37 f

...

exec_unit/alu_b_mux/out[8] (mux4_width32_1) 0.00 2.37 r

exec_unit/addsub/alu_b[8] (alu_addsub) 0.00 2.37 r

...

exec_unit/addsub/result[31] (alu_addsub) 0.00 5.27 r

exec_unit/wb_mux/in1[31] (mux8_width32) 0.00 5.27 r

...

exec_unit/wb_mux/out[31] (mux8_width32) 0.00 5.79 r

exec_unit/rfile/wd[31] (regfile) 0.00 5.79 r

exec_unit/rfile/registers_reg[0][31]/D (EDFQD4) 0.00 5.79 r

data arrival time 5.79

clock ideal_clock1 (rise edge) 7.00 7.00

clock network delay (ideal) 0.00 7.00

clock uncertainty -1.00 6.00

exec_unit/rfile/registers_reg[0][31]/CP (EDFQD4) 0.00 6.00 r

library setup time -0.18 5.82

data required time 5.82

--

data required time 5.82

data arrival time -5.79

--

slack (MET) 0.03

Figure 4: Example fragment from the synth timing.rpt

(and thus increasing performance). The report is generated from a purely static worst-case timing
analysis (i.e. independent of the actual signals which are active when the processor is running).
The first column lists various nodes in the design. Note that I have cut out many of the nodes
internal to the higher level modules. We can see that the critical path starts at bit 26 of the
instruction register, goes through the combinational control logic, through the mux select of one of
the alu input muxes, through the addsub module, through the writeback mux, and finally ends at
the register file. The last column lists the cumulative delay to that node, while the middle column
shows the incremental delay. We can see that the control logic contributes almost 1.1 ns of delay, the
alu input mux contributes 1 ns of delay, the addsub module contributes 2.9 ns of delay, and finally
the writeback mux contributes 0.52 ns of delay. The critical path takes a total of 5.79ns which is

6.884 Lab Assignment 2, Spring 2005 9

Register
File

bn
eq

lo
gi

c_
fu

nc

sh
ift

_f
un

c

al
u_

fu
nc

w
b_

se
l

A
dd

/S
ub

S
hi

ft
er

Lo
gi

c
U

ni
t

2’b0

Instruction
Memory

iaddr inst

inst_x[15:0]
si

gn
ex

t_
se

l

im
m

_s
el

rd
1[

31
] (

bs
ig

n)

16

shamt

a_
se

l

store_data

w
en

ra
2

ra
1

rd1

rd2

wd

w
a

[2
5:

21
]

Decoder

[2
0:

16
]

wen

wen

wen

wdata

addr

rdata

fromhost[7:0]

Data
Memory

tohost[7:0]

inst_x[25:0]

pc_f[31:28]

inst_x[15:0]

{14(inst_x[15])} pc_branch

except_vec

reset_vec

pc_jump

pc_jr

2’b0

4 pc_seq

pc_sel

inst_x[15]

inst_x[10:6]

[1
5:

11
]

[2
0:

16
]

31

de
st

_s
el

pc_next

inst_x

Fetch Stage

System Coprocessor 0

Execute Stage

pc_f

Figure 5: Critical path through MIPS Processor

plenty fast to meet the 7ns clock period constraint. Notice, however, that there is a nanosecond
of clock uncertainty. This was specified in the template-syn.tcl script so that the synthesis tool
would be forced to generate a more conservative implementation. We do this because the timing
analysis used by Design Compiler ignores wire delay, and thus after place+route the critical path
will definitely get slower. The nanosecond of uncertainty helps give us some extra slack to make
up for this wire delay. Also notice that it is not enough for the critical path to be faster than 6 ns
- the register file’s setup time reduces the effective clock period by another 0.18 ns (see the slides
from Lecture 6 for more on clocking). The final line of the report indicates that the critical path
makes timing with 0.03 ns to spare. Figure 5 illustrates the critical path. You are free to try for a
more aggressive design by reducing the target clock period specified in template.sdc or the clock
uncertainty specified in template-syn.tcl. It is important to note that for this lab assignment
there is essentially no delay through the memories. Furthermore, Design Compiler does not know
that the memory address output is even connected to the memory data input and thus the static
timing analysis on these paths is relatively useless. Later in the course, when we integrate a memory
generator, we will be better able to model these paths.

You will want to save synth area.rpt, synth timing.rpt, and dc.log before continuing on with
the lab. These files will be useful when writing your lab report.

6.884 Lab Assignment 2, Spring 2005 10

Synopsys provides a GUI front-end to Design Compiler called Design Vision which we will use to
analyze the synthesis results. You should avoid using the GUI to actually perform synthesis since
we want to use scripts for this. To launch Design Vision move into the Design Compiler working
directory and use the following command.

% pwd

.../2005-spring/<username>/mips2stage/build/synth

% design_vision

Load your design with the File → Read menu option and select the synthesized.db file. You
can browse your design with the hierarchical view. If you right click on a module and choose the
Schematic View option, the tool will display a schematic of the synthesized logic corresponding to
that module. Figure 6 shows the schematic view for the branch tests module. The synthesizer
has used 32 xor gates and a tree of or/nor gates to create a comparator for the bneq control signal.
The tool has chosen xor gates with different drive strengths to help optimize performance through
the logic (see slides from Lecture 3 for more information on how gate sizing impacts performance).

You can use Design Vision to examine various timing data. The Schematic → Add Paths From/To
menu option will bring up a dialog box which you can use to examine a specific path. The default
options will produce a schematic of the critical path. The Timing → Paths Slack menu option
will create a histogram of the worst case timing paths in your design. You can use this histogram
to gain some intuition on how to approach a design which does not meet timing. If there are
a large number of paths which have a very large negative timing slack then a global solution is
probably necessary, while if there are just one or two paths which are not making timing a more
local approach may be sufficient. Figure 7 shows an example of using these two features.

It is sometimes useful to examine the critical path through a single submodule. To do this, right
click on the module in the hierarchy view and use the Characterize option. Check the timing,
constraints, and connections boxes and click OK. Now choose the module from the drop down list
box on the toolbar (called the Design List). Choosing Timing → Report Timing Paths will provide
information on the critical path through that submodule given the constraints of the submodule
within the overall design’s context.

Design Compiler and Design Vision are very sophisticated tools and the only way to become
competent with using them is to make extensive use of the relevant documentation. The following
list identifies what documentation is available in the course locker. Also remember that the standard
cell databook is a valuable resource.

• dc-user-guide.pdf - Design Compiler User Guide

• presto-HDL-compiler.pdf - Guide for the Verilog Complier used by DC

• dc-quick-reference.pdf - Design Compiler Quick Reference

• dc-command-line-guide.pdf - Design Compiler Command Line Ref

• dc-constraints.pdf - Design Compiler Constraints and Timing Ref

• dc-opt-timing-analysis.pdf - Design Compiler Optimization and Timing Analysis Ref

• dv-tutorial.pdf - Design Vision Tutorial

• dv-user-guide.pdf - Design Vision User Guide

6.884 Lab Assignment 2, Spring 2005 11

Figure 6: Screen shot of a schematic view in Design Vision

Figure 7: Screen shot of a timing results in Design Vision

6.884 Lab Assignment 2, Spring 2005 12

3 Placing and Routing the Two-Stage MIPS Processor

This section describes how to use Cadence Encounter to place and route the design you synthesized
in the previous section. As with synthesis, we will run Encounter in a subdirectory of the build
directory to keep things organized. Like Design Compiler, Encounter uses its own shell and a user
is able to execute commands directly from that shell. For now we will use the makefile and various
scripts to control Encounter, but it is important for you to realize that you can always work directly
from the Encounter shell. For example, to find out what a certain Encounter command does you
can use the following commands.

% pwd

.../2005-spring/<username>/mips2stage/build

% mkdir pr

% cd pr

% encounter -nowin

encounter 1> man reportGateCount

...

% exit

The makefile will take care of copying the template-pr.setup and template-pr.tcl scripts from
the config directory into the appropriate Encounter working directory. You can edit these tem-
plates to control what Encounter does. Encounter also references the template.sdc constraint file
to load in the design constraints. It is important to use the same constraint file for both synthesis
and place+route (the makefile ensures this). To place+route your design simply use the following
command.

% pwd

.../2005-spring/<username>/mips2stage/build

% make pr

Place+route will probably take significantly longer than synthesis. When Encounter is finished you
can see the final results by examining the pr area.rpt, pr timing slacks.rpt, and
pr timing violations.rpt reports located in the pr subdirectory. Compare the results from after
synthesis to those from after place+route. The area might change due to further logic optimizations,

Analysis mode: -setup -skew -caseAnalysis -async -noClkSrcPath

reportSlacks -outfile pr_timing_slacks.rpt

Format: clock timeReq slackR/slackF setupR/setupF instName/pinName # cycle(s)

#

ideal_clock1(R) 7.000 -0.096/0.408 0.080/0.067 fetch_unit/pc_reg[16]/D 1

ideal_clock1(R) 7.000 -0.091/0.171 0.171/0.158 fetch_unit/pc_reg[28]/D 1

ideal_clock1(R) 7.000 -0.046/0.028 0.164/0.167 exec_unit/rfile/registers_reg[14][31]/D 1

ideal_clock1(R) 7.000 -0.045/0.028 0.164/0.167 exec_unit/rfile/registers_reg[1][31]/D 1

Figure 8: Example fragment from the synth timing.rpt

6.884 Lab Assignment 2, Spring 2005 13

Clk Period (10ns)Clk Period (10ns)

Setup
(2.75)

Worst Case Delay
For Path A (5.75)

Skew
(1.5)

Slack
(1.5)

Skew (−1.5)

Worst Case Delay For Path A (13.5)

(c) Effective Clock Period is 14.75ns(a) Example Circuit

Path A

Clk0 Clk1

(b) Effective Clock Period is 8.5ns

Clk1

Clk0

Slack (−4.75)

Setup (2.75)

Endpoint

Clk0

Clk1

Endpoint
of Path A of Path A

Figure 9: Determining your hardware’s effective clock period

and the timing might change due to the influence of wire delay. Encounter also inserts buffers into
your design to optimize drive strengths, and these buffers can increase delay and area. The area for
the mips cpu module listed in pr area.rpt is the final area of your design and is the one you should
provide in your lab report. The pr timing slacks.rpt report lists the slack for various endpoints,
but it does not show the actual paths. Take a look at this report to see if your design met timing
- just because it met timing after synthesis does not mean it will make timing after place+route!
Figure 8 shows the slack report corresponding to the design synthesized in the previous section. The
first column is the start of the path (i.e. the rising clock edge) and the final column is the end of the
path. The second column is the constraint; in this case the only constraint is the clock period. The
third column shows the slack for that path for both the rising and falling edge. A positive number
means that the path made timing and a negative number means that the corresponding path did
not make timing by the listed amount in nanoseconds. So in Figure 8 you can see that the design
did not make timing by 0.096 ns on a path which ends at the PC. The pr timing violations.rpt

report provides more information about the exact paths which are failing timing and it is similar
in format to the synth timing.rpt timing report we looked at earlier. The sum column lists the
cumulative delay to that point in the path, while the delta column lists the incremental change in
delay between points. In this case examining the pr timing violations.rpt report shows that
the critical path is now from the IR register, through the register file, through the branch tests,
through the control unit, and back to the fetch unit. Notice that the critical path is different from
the one determined after synthesis! This is for two reasons: (a) the results after synthesis do not
take into account wire delay and (b) Encounter does additional optimizations and buffer insertion.

Even though this design did not make the 7 ns clock period constraint it is still a valid piece of
hardware which will operate correctly with some clock period (it is just slower than 7 ns). Similarly,
a design which makes the timing constraint but does so with a positive slack can run faster than
the constrained clock period. For this lab we are more concerned about the effective clock period of
your design as opposed to the clock constraint you set before synthesis. The effective clock period
is simply the clock period constraint minus the worst slack (Tclk − Tslack). pr timing slacks.rpt

and pr timing violations.rpt are both sorted by slack so that the path with the worst slack is
listed first. To determine the effective clock period for your design simply choose the smaller of the
rising and falling edge slacks. Figure 9 illustrates two examples: one with positive slack and one
with negative slack. For the initial synthesis and place+route of the example two-stage mips core

6.884 Lab Assignment 2, Spring 2005 14

we see from Figure 8 that the worse case slack is 7.096 ns, and thus the effective clock period is
(7 − (−0.096)) = 7.096 or approximately 140.9 MHz. This is the performance number you would
provide in your lab report. Note that just because the design did not make timing at 7 ns, this
does not mean it cannot go faster. If we set the clock period constraint to 6 ns it might result in
a design with an effective clock period of 6.2 ns. Lower clock period constraints force the tools to
work harder and they may or may not do better. You should experiment with this very important
parameter.

We can use the Encounter GUI to view the design after place and route. To use the Encounter
GUI move into the place+route working directory and use the following commands. You should
open your design using the Encounter shell prompt and not actually through the GUI.

% pwd

.../2005-spring/<username>/mips2stage/build/pr

% encounter

encounter 1> restoreDesign placedrouted.dat mips_cpu

Encounter will take a minute or so to load the standard cell libraries and then it will show you your
chip. Figure 10 shows the chip for the example two-stage mips pipeline. The large metal regions
around the edge of your design make up the power/ground ring. You can use the color pallet to
select which layers are displayed. There are several pallets - the small thin button under All Colors
switches between two pallets and just clicking the All Colors button will bring up a dialog box
with all of the various layers. Use Control-R to redraw the screen after changing which layers are
visible. For example, Figure 11 shows a close up of some of the lower layers of metal for just a few
cells on the chip. Each standard cell is a fixed height and a variable width; the routing between
cells happens on the metal layers above the standard cells (see the slides from Lecture 1 for more
on ASIC design using standard cells).

Use the Edit → Select By Name menu option to highlight cells or nets with a given name. For
example, try searching for nets with the name clk* to see the clock tree and try searching for
instances with the name FILL* to see the filler cells. Filler cells are cells which contain no logic
and are just there to wire up power, ground, and the wells. Too many filler cells is an inefficient
use of area and means Encounter is having trouble performing place+route.

Click on the middle of the three view buttons found in the lower lefthand portion of the GUI to
see how modules map to the chip. Use Tools → Design Browser to bring up a module hierarchy
browser. If you choose a submodule of the toplevel module then it will be highlighted on the chip
display. If you click on the module in the chip display and then press Shift-G you will go down
one level in the hierarchy. You can now select modules in the design browser to highlight them.
Figure 12 shows the register file in red (the large shaded region at the bottom of the chip). As
expected it accounts for over half of the chip area.

6.884 Lab Assignment 2, Spring 2005 15

Figure 10: Screen shot of final chip in Encounter GUI

Figure 11: Closeup of standard cells and routing

6.884 Lab Assignment 2, Spring 2005 16

Figure 12: Register file module is highlighted in red

Encounter is a very sophisticated tool and as with Design Compiler, the only way to become
competent with using it is to spend some time looking over the relevant documentation. The
following list identifies what documentation is available in the course locker.

• encounter-user-guide.pdf - Encounter User Guide

• encounter-command-line-guide.pdf - Encounter Text Command Reference

• encounter-menu-ref.pdf - Encounter GUI Reference

You are now done with the first part of the lab assignment. You should prepare a short write up
(half page) as a text document in your project directory. This writeup should discuss any changes
you had to make to your original Verilog to get it to synthesize, plus any insights you have into
your initial results. Create a new subdirectory called mips2stage/lab2writeup and place your
writeup in this directory as a text document called writeup.txt. Also copy the following files into
this directory and rename them as indicated. Be sure to use CVS to add and commit the new
directory and its contents. The make save-results command can be a useful way to quickly save
some results after working on a design.

• synth area.rpt → initial synth area.rpt

• synth timing.rpt → initial synth timing.rpt

• dc.log → initial dc.log

• pr area.rpt → initial pr area.rpt

• pr timing slacks.rpt → initial pr timing slacks.rpt

6.884 Lab Assignment 2, Spring 2005 17

• pr timing violations.rpt → initial pr timing violations.rpt

We suggest that you create a CVS tag for your initial synthesizable design now that you have
pushed it completely through the toolflow for the first time. You should only create tags on clean
checkouts. A clean checkout is when you use cvs checkout in an empty temporary directory.
When you tag a file it leaves a sticky bit on that file which can complicate later modifications. So
the best approach to tagging your project is as follows:

1. Make sure you add all the appropriate files and commit your changes
% pwd

.../2005-spring/<username>/mips2stage

% cvs update

% cvs commit

2. Create a new junk directory somewhere
% cd

% mkdir junk

3. Checkout your project in the junk directory
% cd junk

% cvs checkout 2005-spring/<username>/mips2stage

4. Verify that your project builds correctly
% mkdir build

% cd build

% ../configure.pl ../config/mips2stage.mk

% make run-tests

% make pr

5. Add the CVS tag
% cd ..

% pwd

.../junk/2005-spring/<username>/mips2stage

% cvs tag lab2-initial .

6. Delete the junk directory
% cd

% rm -rf junk

Now you can always recreate this initial synthesis and place+route using the following CVS com-
mands in a fresh working directory.

% mkdir temp

% cvs checkout -r lab2-initial 2005-spring/<username>/mips2stage

% cd 2005-spring/<username>/mips2stage

% mkdir build

% cd build

% ../configure.pl ../config/mips2stage.mk

% make pr

6.884 Lab Assignment 2, Spring 2005 18

4 Design Space Exploration

In the second part of the lab you will try and increase the performance or decrease the area of
your initial design. There are many techniques you can use to do this and a few examples will be
discussed in this section. You should feel free to try both Verilog level optimizations as well as
using the tools more effectively.

4.1 Control Logic Optimization

As a first optimization we will add don’t cares to our control logic to enable the synthesizer to
perform more aggressive optimizations. The results reported in the first part of this document
used zeros instead of don’t cares. After changing the Verilog, we rerun our tests to verify that our
design is still functionally correct. This is an essential step after any optimization; after all, an
optimized but incorrect design is of no use. We can rerun the tests quite simply with the make

run-tests command. We then rerun Design Compiler to see the impact on performance and
area. We observe that the area of the control module has been reduced to 617 for an area savings
of 33%. Furthermore, we now note that the control logic is no longer on the critical path, and
instead the critical path goes from the register file, through the alu input mux, through the addsub
module, through the writeback mux, and back to the register file. Notice that we evaluated this
optimization before place+route - this is a standard approach since place+route is relatively time
consuming. Just remember to occasionally push the design all the way to layout to verify that
you are actually making progress. For the control logic optimization, after place+route we see a
comparable decrease in area, the control logic is no longer on the critical path, and the clock period
is reduced from 7.096 ns to 7.041 ns.

4.2 Multiplexer Optimization

It is advisable to examine the synth area.rpt report to see how the synthesizer is actually im-
plementing you design. It can sometimes reveal situations where the synthesizer is unable to infer
what you intended. As an example let’s look at the alu input muxes and the write back mux. The
original Verilog and a fragment from the resulting synth area.rpt is shown in Figure 13 (the eight
input multiplexer shows similar results). If you consult the standard cell databook, you will see
that Design Compiler is not using the MUX standard cells and is instead synthesizing a mux from
random logic. It may or may not be doing this intentionally, but it is usually a good idea to use
the MUX cells for your multiplexers. If we take a look at the HDL Verilog Compiler Reference
(presto-HDL-compiler.pdf) we can learn a little more about how Design Compiler infers muxes.
Based on this information we recode the muxes as shown in Figure 14. We also rerun our tests to
make sure the design is still functionally correct. The alternative design is actually slightly larger.
The muxes seem to be slightly faster since the effective clock period has decreased to 7.006 ns.

6.884 Lab Assignment 2, Spring 2005 19

Reference Area

module mux4 #(parameter width = 0) BUFFD16 162.95

(CKBD16 40.73

input [width-1:0] in0, in1, in2, in3, CKND3 11.88

input [1:0] sel, CKND4 15.27

output [width-1:0] out CKND6 44.13

); IND2D4 56.01

INVD1 6.78

assign out INVD2 208.78

= (sel == 2’d0) ? in0 : ND2D2 33.94

(sel == 2’d1) ? in1 : NR2XD1 195.20

(sel == 2’d2) ? in2 : NR2XD4 96.75

(sel == 2’d3) ? in3 : {width{1’bx}}; NR2XD8 61.10

OAI22D0 16.97

endmodule OAI22D1 20.36

Total 970.91

Figure 13: Verilog and fragment from the synth area.rpt for 4 input mux

module mux4 #(parameter width = 0)

(

input [width-1:0] in0, in1, in2, in3, Reference Area

input [1:0] sel, --------------------

output [width-1:0] out BUFFD16 81.47

); CKND0 3.39

CKND2D0 10.18

reg [width-1:0] out; INR3D0 61.10

always @(*) MUX2ND0 11.88

begin MUX4D1 806.26

case (sel) // synopsys infer_mux --------------------

2’d0 : out <= in0; Total 974.30

2’d1 : out <= in1;

2’d2 : out <= in2;

2’d3 : out <= in3;

default : out <= {width{1’bx}};

endcase

end

endmodule

Figure 14: Verilog and fragment from the synth area.rpt for alternative 4 input mux

6.884 Lab Assignment 2, Spring 2005 20

4.3 Adder/Subtracter Optimization

Figure 15 shows a common idiom used in the first laboratory assignment for implementing the
various functional units. The problem with this is that the synthesizer might infer a separate
adder, subtracter, and comparator and then connect them with a mux. We can examine the
synth area.rpt report (shown in Figure 16) to see exactly what was synthesized. The report
indicates that synthesizer did indeed infer a separate adder, subtracter, and two comparators. We
might consider recoding our Verilog to be more explicit with what we actually want in terms of
hardware. Figure 17 shows one possibility where we use a single adder. For subtraction we simple
invert and add one to the operand and use the same adder. After making this change (and rerunning
our tests), Design Compiler now synthesizes an adder and an incrementer. We also avoid using
the comparison operators eliminating the inferred comparators. The alternative implementation is
20% smaller and although the addsub module is still on the critical path the effective clock period
is now 6.957 ns. Can you think of same way to eliminate the incrementer?

module alu_addsub

(

input [1:0] addsub_fn, // 00 = add, 01 = sub, 10 = slt, 11 = sltu

input [31:0] alu_a, // A operand

input [31:0] alu_b, // B operand

output [31:0] result // result

);

assign result

= (addsub_fn == 2’b00) ? (alu_a + alu_b) :

(addsub_fn == 2’b01) ? (alu_a - alu_b) :

(addsub_fn == 2’b10) ? ({ 31’b0, ($signed(alu_a) < $signed(alu_b)) }) :

(addsub_fn == 2’b11) ? ({ 31’b0, (alu_a < alu_b) }) :

(32’bx);

endmodule

Figure 15: Initial Verilog for adder/subtracter functional unit

Reference Library Unit Area Count Total Area Attributes

BUFFD16 tcb013ghpwc 40.737598 1 40.737598

...

alu_addsub_DW01_add_1 5177.075195 1 5177.075195 h

alu_addsub_DW01_cmp2_32_0 1402.053589 1 1402.053589 h

alu_addsub_DW01_cmp2_32_1 1403.751343 1 1403.751343 h

alu_addsub_DW01_sub_1 5195.747559 1 5195.747559 h

Total 19 references 14219.134766

Figure 16: Area results initial for adder/subtracter functional unit

6.884 Lab Assignment 2, Spring 2005 21

4.4 Design Ware Optimizations

Based on the previous section you might assume that performing such low-level Verilog transforma-
tions is the best way to improve your design. While this is sometimes true, it is also very possible
that such approaches will make your design worse. Low-level Verilog can get in the way of the
synthesis tool and complicate its job. Synopsys provides a library of commonly used arithmetic
components as highly optimized building blocks. This library is called DesignWare and the toolflow
is already setup to try and use DesignWare components where it can. For example, the adder, sub-
tracter, and comparators listed in Figure 16 are DesignWare blocks as indicated by the DW in their
name. We can try to optimize our design by making sure that the tool is inferring the DesignWare
components we desire.

For example, we might want to try to have Design Compiler use a unified adder/subtracter De-
signWare component instead of complementing and incrementing alu b ourselves. We first consult
the DesignWare quick reference /mit/6.884/doc/design-ware-quickref.pdf to see if the De-
signWare libraries include an adder/subtracter. It does indeed, so we then lookup the datasheet
for the DW01 addsub component (/mit/6.884/doc/design-ware-datasheets/dw01 addsub.pdf).
The data sheet recommends that we write our Verilog code as show in Figure 18. After making this
change we re-synthesize our design only to find that Design Compiler has chosen to use an adder
and a subtracter instead of the DW01 addsub component. Nothing is really wrong here - the tool
has used various cost functions and ultimately decided that using a separate adder and subtracter
was better than using the DW01 addsub component. It might choose to use the DW01 addsub com-
ponent if we adjusted the clock period constraint. Can you use a DesignWare component in your
alu shifter?

If we really want to try and force Design Compiler to use the DW01 addsub module, we can do so
by simply instantiating the DesignWare component directly as shown below.

DW01_addsub#(32) dw_addsub(.A(alu_a), .B(alu_b), .CI(1’b0), .ADD_SUB(~ctl),

.SUM(sum), .CO(cout));

Note that since we still need to simulate our processor with VCS, we need to somehow point to
a valid functional implementation of the adder/subtracter. Synopsys provides these functional
models for all of the DesignWare components and to use them you must add the following line to
your vcs extra options variable in mips2stage.mk.

-y $(SYNOPSYS)/dw/sim_ver +libext+.v+

We suggest only using direct instantiation as a last resort since it it creates a dependency between
your high-level design and the DesignWare libraries, and it limits the options available to Design
Compiler during synthesis.

Documentation on the DesignWare libraries can be found in the locker. This documentation dis-
cusses the best way to encourage the tools to infer the proper DesignWare block.

• design-ware-quickref.pdf - DesignWare quick reference

• design-ware-user-guide.pdf - DesignWare User Guide

• design-ware-datasheets - Directory containing datasheets on each component

6.884 Lab Assignment 2, Spring 2005 22

module alu_addsub

(

input [1:0] addsub_fn, // 00 = add, 01 = sub, 10 = slt, 11 = sltu

input [31:0] alu_a, // A operand

input [31:0] alu_b, // B operand

output [31:0] result // result

);

wire [31:0] xB = (addsub_fn != 2’b00) ? (~alu_b + 1) : alu_b;

wire [31:0] sum = alu_a + xB;

wire diffSigns = alu_a[31] ^ alu_b[31];

reg [31:0] result;

always @(*)

begin

if ((addsub_fn == 2’b00) || (addsub_fn == 2’b01))

result = sum;

else if (addsub_fn == 2’b10)

result = (diffSigns) ? { 31’b0, ~alu_b[31] } : { 31’b0, sum[31] };

else if (addsub_fn == 2’b11)

result = (diffSigns) ? { 31’b0, alu_b[31] } : { 31’b0, sum[31] };

else

result = 32’bx;

end

endmodule

Figure 17: Alternative Verilog for adder/subtracter functional unit (see Verilog source code in
examples/mips2stage for more details on how the set-less-than logic works)

register [31:0] sum;

always @(alu_a or alu_b or ctl)

begin

if (ctl == 1)

sum = alu_a + alu_b;

else

sum = alu_a - alu_b;

end

Figure 18: Verilog always block for adder/subtracter functional unit in an attempt to have Design
Compiler infer a DW01 addsub DesignWare component

6.884 Lab Assignment 2, Spring 2005 23

5 Deliverables

For this lab assignment you are to synthesize your initial design as well as an optimized design.
You are free to optimize your design however you wish. You can try to focus on decreasing area,
on increasing performance, or both. You can use Verilog modifications, tool script changes, or
DesignWare components. It is not enough to just follow the suggestions made in Sections 4.1-4.3;
you need to try something on your own. Note that throughout this handout we have been using a
clock period constraint of 7 ns, but you should try several different clock period constraints. If you
are trying to decrease area you will probably have a longer clock period, while if you are trying to
increase performance you will obviously be trying for a shorter clock period.

You should submit your final optimized design using CVS. If you would like you can create two
separate makefile fragments in the config directory along with possibly multiple versions of the
template* scripts so that you can build both the original design as well as the optimized design.
However, this is not necessary. As discussed in Section 3 you should create a lab2-initial CVS
tag so you can always recreate your initial synthesis and place+route.

In addition to the optimized design, you must also submit a short (one page) lab report. This report
should be a text document and it should be placed in the following directory mips2stage/lab2writeup.
The writeup should discuss any modifications you made to your original Verilog to get it to synthe-
size, and it should also describe what optimizations you made to increase performance or decrease
area. You should also clearly indicate the optimized total area, total area minus the register file,
and final effective clock period. Please comment on what the final critical path is in your design.
You should also include the reports for your initial and optimized design. We will put together
an (anonymous) scatter plot of each student’s area vs. clock cycle results so you can compare
your design to everyone else’s design. The following list outlines exactly what should be in your
mips2stage/lab2writeup directory.

• writeup.txt

• initial synth area.rpt

• initial synth timing.rpt

• initial dc.log

• initial pr area.rpt

• initial pr timing slacks.rpt

• initial pr timing violations.rpt

• final synth area.rpt

• final synth timing.rpt

• final dc.log

• final pr area.rpt

• final pr timing slacks.rpt

• final pr timing violations.rpt

It would be useful if you use a CVS tag once you have committed all of your changes and finished
your writeup. This will make it easier for you to go back and reexamine your design. As before,

6.884 Lab Assignment 2, Spring 2005 24

you should always create CVS tags on clean checkouts. See Section 2 for a list of commands to
use when tagging your project. Please make sure that all the necessary files are checked into the
lab2writeup directory.

