
L02 – Verilog 16.884 – Spring 2005 02/04/05

Digital Design Using Verilog

PC+4+4*SXT(C)

ASEL
0

1

Data Memory

RD

WD

Adr

R/W

WDSEL

0 1 2

WA

Rc: <25:21> 0
1

XP

PC

JT

+4

Instruction

Memory

A
D

Rb: <15:11>

Ra: <20:16>

RA2SELRc: <25:21>

+

Register

File
RA1

RA2

RD1

RD2

BSEL

0
1

C: SXT(<15:0>)
Z

ALU
A

B

JT
WA

WD

WE

ALUFNControl Logic

Z

ASEL

BSEL

PCSEL

RA2SEL

WDSEL

ALUFN

Wr
PC+4

0
1

Wr

01
2

3
4

XAdrI
LL
OP

WASEL

WASEL

IRQ

WERF

WERF

00

PCSEL

always @(posedge clk) begin

assign pcinc = pc + 4;

module beta(clk,reset,irq
,…

Input [31:0] mem_data;

endmoduleIf (done) $finish;

for (i=0; i < 31; i = i+1) begin

L02 – Verilog 26.884 – Spring 2005 02/04/05

Hardware Description Languages

In the beginning designs involved just a few
gates, and thus it was possible to verify these

circuits on paper or with breadboards

L02 – Verilog 36.884 – Spring 2005 02/04/05

Hardware Description Languages

As designs grew larger and more complex, designers
began using gate-level models described in a
Hardware Description Language to help with

verification before fabrication

L02 – Verilog 46.884 – Spring 2005 02/04/05

Hardware Description Languages
When designers began working
on 100,000 gate designs, these
gate-level models were too low-
level for the initial functional
specification and early high-

level design exploration

L02 – Verilog 56.884 – Spring 2005 02/04/05

Hardware Description Languages
Designers again turned to HDLs
for help – abstract behavioral

models written in an HDL
provided both a precise

specification and a framework
for design exploration

L02 – Verilog 66.884 – Spring 2005 02/04/05

Advantages of HDLs
Allows designers to talk about what the hardware
should do without actually designing the hardware
itself, or in other words HDLs allow designers to
separate behavior from implementation at various
levels of abstraction

HDLs do this with
modules and interfaces

L02 – Verilog 76.884 – Spring 2005 02/04/05

Advantages of HDLs
Allows designers to talk about what the hardware
should do without actually designing the hardware
itself, or in other words HDLs allow designers to
separate behavior from implementation at various
levels of abstraction

L02 – Verilog 86.884 – Spring 2005 02/04/05

Advantages of HDLs
Allows designers to talk about what the hardware
should do without actually designing the hardware
itself, or in other words HDLs allow designers to
separate behavior from implementation at various
levels of abstraction

L02 – Verilog 96.884 – Spring 2005 02/04/05

Advantages of HDLs
Allows designers to talk about what the hardware
should do without actually designing the hardware
itself, or in other words HDLs allow designers to
separate behavior from implementation at various
levels of abstraction

Processor
A

Processor
B

Processor
C

Network

Memory
Bank

A

Memory
Bank

B

L02 – Verilog 106.884 – Spring 2005 02/04/05

Advantages of HDLs
Allows designers to talk about what the hardware
should do without actually designing the hardware
itself, or in other words HDLs allow designers to
separate behavior from implementation at various
levels of abstraction
– Designers can develop an executable functional specification

that documents the exact behavior of all the components and
their interfaces

– Designers can make decisions about cost, performance,
power, and area earlier in the design process

– Designers can create tools which automatically manipulate
the design for verification, synthesis, optimization, etc.

L02 – Verilog 116.884 – Spring 2005 02/04/05

A Tale of Two HDLs

Harder to learn and use, DoD
mandate

Gate-level, dataflow, and
behavioral modeling.
Synthesizable subset.

Design is composed of entities
each of which can have
multiple architectures

Extensible types and
simulation engine

ADA-like verbose syntax, lots
of redundancy

VHDL Verilog

Easy to learn and use, fast
simulation

Gate-level, dataflow, and
behavioral modeling.
Synthesizable subset.

Design is composed of modules
which have just one
implementation

Built-in types and logic
representations

C-like concise syntax

L02 – Verilog 126.884 – Spring 2005 02/04/05

We will use Verilog …
Advantages
– Choice of many US design teams
– Most of us are familiar with C-like syntax
– Simple module/port syntax is familiar way to organize

hierarchical building blocks and manage complexity
– With care it is well-suited for both verification

and synthesis

Disadvantages
– Some comma gotchas which catch beginners everytime
– C syntax can cause beginners to assume C semantics
– Easy to create very ugly code, good and consistent

coding style is essential

L02 – Verilog 136.884 – Spring 2005 02/04/05

An HDL is NOT a
Software Programming Language

Software Programming Language
– Language which can be translated into machine instructions

and then executed on a computer

Hardware Description Language
– Language with syntactic and semantic support for modeling the

temporal behavior and spatial structure of hardware

module foo(clk,xi,yi,done);
input [15:0] xi,yi;
output done;

always @(posedge clk)
begin:

if (!done) begin
if (x == y) cd <= x;
else (x > y) x <= x - y;

end
end

endmodule

L02 – Verilog 146.884 – Spring 2005 02/04/05

Hierarchical Modeling with Verilog
A Verilog module includes a module name and an
interface in the form of a port list
– Must specify direction and bitwidth for each port

adder

A B

sumcout

module adder(A, B, cout, sum);
input [3:0] A, B;
output cout;
output [3:0] sum;
// HDL modeling of
// adder functionality

endmodule Don’t forget
the semicolon!

L02 – Verilog 156.884 – Spring 2005 02/04/05

Hierarchical Modeling with Verilog
A Verilog module includes a module name and an
interface in the form of a port list
– Must specify direction and bitwidth for each port

– Verilog-2001 introduced a succinct ANSI C style portlist

module adder(input [3:0] A, B,
output cout,
output [3:0] sum);

// HDL modeling of 4 bit
// adder functionality

endmodule

adder

A B

sumcout

L02 – Verilog 166.884 – Spring 2005 02/04/05

Hierarchical Modeling with Verilog
A module can contain other modules through
module instantiation creating a module hierarchy
– Modules are connected together with nets

– Ports are attached to nets either by position or by name

module FA(input a, b, cin
output cout, sum);

// HDL modeling of 1 bit
// adder functionality

endmodule

FA

ba

c

cin

cout

L02 – Verilog 176.884 – Spring 2005 02/04/05

Hierarchical Modeling with Verilog
A module can contain other modules through
module instantiation creating a module hierarchy
– Modules are connected together with nets

– Ports are attached to nets either by position or by name

adder

A B

Scout

module adder(input [3:0] A, B,
output cout,
output [3:0] S);

FA fa0(...);
FA fa1(...);
FA fa2(...);
FA fa3(...);

endmoduleFA FA FA FA

L02 – Verilog 186.884 – Spring 2005 02/04/05

Hierarchical Modeling with Verilog
A module can contain other modules through
module instantiation creating a module hierarchy
– Modules are connected together with nets

– Ports are attached to nets either by position

adder

A B

Scout

FA FA FA FA

module adder(input [3:0] A, B,
output cout,
output [3:0] S);

wire c0, c1, c2;
FA fa0(A[0], B[0], 0, c0, S[0]);
FA fa1(A[1], B[1], c0, c1, S[1]);
FA fa2(A[2], B[2], c1, c2, S[2]);
FA fa3(A[3], B[3], c2, cout, S[3]);

endmodule
Carry Chain

L02 – Verilog 196.884 – Spring 2005 02/04/05

Hierarchical Modeling with Verilog
A module can contain other modules through
module instantiation creating a module hierarchy
– Modules are connected together with nets

– Ports are attached to nets either by position or by name

adder

A B

Scout

module adder(input [3:0] A, B,
output cout,
output [3:0] S);

wire c0, c1, c2;
FA fa0(.a(A[0]), .b(B[0]),

.cin(0), .cout(c0),

.sum(S[0]);
FA fa1(.a(A[1]), .b(B[1]),

...

endmodule

FA FA FA FA

L02 – Verilog 206.884 – Spring 2005 02/04/05

Verilog Basics

Data Values Numeric Literals

0 1
X Z

4’b10_11
Underscores
are ignored

Base format
(d,b,o,h)

Decimal number
representing size in bits

32’h8XXX_XXA3

L02 – Verilog 216.884 – Spring 2005 02/04/05

3 Common Abstraction Levels

Behavioral
Module’s high-level algorithm is
implemented with little concern

for the actual hardware

Gate-Level

Dataflow
Module is implemented by
specifying how data flows

between registers

Module is implemented in terms
of concrete logic gates (AND,

OR, NOT) and their
interconnections

L02 – Verilog 226.884 – Spring 2005 02/04/05

3 Common Abstraction Levels

Behavioral Designers can create
lower-level models from
the higher-level models

either manually or
automatically

Gate-Level

Dataflow The process of
automatically generating a

gate-level model from
either a dataflow or a

behavioral model is called

Logic Synthesis

L02 – Verilog 236.884 – Spring 2005 02/04/05

Gate-Level : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

wire [1:0] sel_b;
not not0(sel_b[0], sel[0]);
not not1(sel_b[1], sel[1]);
wire n0, n1, n2, n3;
and and0(n0, c, sel[1]);
and and1(n1, a, sel_b[1]);
and and2(n2, d, sel[1]);
and and3(n3, b, sel_b[1]);
wire x0, x1;
nor nor0(x0, n0, n1);
nor nor1(x1, n2, n3);
wire y0, y1;
or or0(y0, x0, sel[0]);
or or1(y1, x1, sel_b[0]);
nand nand0(out, y0, y1);

endmodule

sel[0]

sel[1]

c

a

d

b

out

Basic logic gates are built-in
primitives meaning there is no
need to define a module for

these gates

L02 – Verilog 246.884 – Spring 2005 02/04/05

Dataflow : 4-input Multiplexer

module mux4(input a, b, c, d
input [1:0] sel,
output out);

wire out, t0, t1;
assign t0 = ~((sel[1] & c) | (~sel[1] & a));
assign t1 = ~((sel[1] & d) | (~sel[1] & b));
assign out = ~((t0 | sel[0]) & (t1 | ~sel[0]));

endmodule

This is called a continuous assignment
since the RHS is always being evaluated

and the result is continuously being
driven onto the net on the LHS

L02 – Verilog 256.884 – Spring 2005 02/04/05

Dataflow : 4-input Multiplexer

module mux4(input a, b, c, d
input [1:0] sel,
output out);

wire t0 = ~((sel[1] & c) | (~sel[1] & a));
wire t1 = ~((sel[1] & d) | (~sel[1] & b));
wire out = ~((t0 | sel[0]) & (t1 | ~sel[0]));

endmodule
An implicit continuous assignment combines

the net declaration with an assign statement
and thus is more succinct

L02 – Verilog 266.884 – Spring 2005 02/04/05

Dataflow : 4-input Mux and Adder
// Four input muxltiplexor
module mux4(input a, b, c, d

input [1:0] sel,
output out);

assign out = (sel == 0) ? a :
(sel == 1) ? b :
(sel == 2) ? c :
(sel == 3) ? d : 1’bx;

endmodule

// Simple four bit adder
module adder(input [3:0] op1, op2,

output [3:0] sum);
assign sum = op1 + op2;

endmodule

Dataflow style Verilog
enables descriptions

which are more
abstract than gate-

level Verilog

L02 – Verilog 276.884 – Spring 2005 02/04/05

Dataflow : Key Points
Dataflow modeling enables the designer to focus
on where the state is in the design and how the
data flows between these state elements without
becoming bogged down in gate-level details
– Continuous assignments are used to connect

combinational logic to nets and ports

– A wide variety of operators are available including:

Arithmetic: + - * / % **
Logical: ! && ||
Relational: > < >= <=
Equality: == != === !===
Bitwise: ~ & | ^ ^~
Reduction: & ~& | ~| ^ ^~
Shift: >> << >>> <<<
Concatenation: { }
Conditional: ?:

Avoid these
operators since

they usually
synthesize poorly

L02 – Verilog 286.884 – Spring 2005 02/04/05

Dataflow : Key Points
Dataflow modeling enables the designer to focus
on where the state is in the design and how the
data flows between these state elements without
becoming bogged down in gate-level details
– Continuous assignments are used to connect

combinational logic to nets and ports

– A wide variety of operators are available including:

Arithmetic: + - * / % **
Logical: ! && ||
Relational: > < >= <=
Equality: == != === !===
Bitwise: ~ & | ^ ^~
Reduction: & ~& | ~| ^ ^~
Shift: >> << >>> <<<
Concatenation: { }
Conditional: ?:

assign signal[3:0]
= { a, b, 2’b00 }

L02 – Verilog 296.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(a or b or c or d or sel)
begin
if (sel == 0)
out = a;

else if (sel == 1)
out = b

else if (sel == 2)
out = c

else if (sel == 3)
out = d

end

endmodule

An always block is a behavioral
block which contains a list of
expressions which are (usually)

evaluated sequentially

The code in an always block can
be very abstract (similar to C

code) – here we implement a mux
with an if/else statement

L02 – Verilog 306.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(a or b or c or d or sel)
begin
if (sel == 0)
out = a;

else if (sel == 1)
out = b

else if (sel == 2)
out = c

else if (sel == 3)
out = d

end

endmodule

An always block can include a
sensitivity list – if any of these
signals change then the always

block is executed

L02 – Verilog 316.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(a, b, c, d, sel)
begin
if (sel == 0)
out = a;

else if (sel == 1)
out = b

else if (sel == 2)
out = c

else if (sel == 3)
out = d

end

endmodule

In Verilog-2001 we can use a
comma instead of the or

L02 – Verilog 326.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(a, b, c, d, sel)
begin
if (sel == 0)
out = a;

else if (sel == 1)
out = b

else if (sel == 2)
out = c

else if (sel == 3)
out = d

end

endmodule

What happens if we accidentally
leave off a signal on the

sensitivity list?

The always block will not
execute if just d changes – so if
sel == 3 and d changes then

out will not be updated

This will cause discrepancies
between simulated and

synthesized hardware – there
are no sensitivity lists in real

hardware so it would work fine!

L02 – Verilog 336.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(*)
begin
if (sel == 0)
out = a;

else if (sel == 1)
out = b

else if (sel == 2)
out = c

else if (sel == 3)
out = d

end

endmodule

In Verilog-2001 we can use the
@(*) construct which creates a

sensitivity list for all signals
read in the always block

L02 – Verilog 346.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(*)
begin
case (sel)
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

Always blocks can contain case
statements, for loops, while loops,

even functions – they enable
high-level behavioral modeling

L02 – Verilog 356.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(*)
begin
case (sel)
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

What about this funny
reg statement?
Is this how you create
a register in Verilog?

No! and whoever
decided on the reg

syntax really
messed things up!

L02 – Verilog 366.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(*)
begin
case (sel)
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

In Verilog a reg is just a variable –
when you see reg think variable not

hardware register!

Any assignments in an always block
must assign to a reg variable – the
reg variable may or may not actually

represent a hardware register

If the always block assigns a value to
the reg variable for all possible

executions then the reg variable is
not actually a hardware register

L02 – Verilog 376.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(*)
begin
case (sel)
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

What about in this
situation? Will the
generated hardware
include a latch for out?

L02 – Verilog 386.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(*)
begin
case (sel)
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

Maybe! What if sel == xx?
Then out is unassigned and
the hardware must maintain
the previous value of out!

L02 – Verilog 396.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer
module mux4(input a, b, c, d

input [1:0] sel,
output out);

reg out;
always @(*)
begin
case (sel)
default : out = 1’bx;
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

Fix it with a default clause
in the case statement –
then no hardware latch is
inferred

L02 – Verilog 406.884 – Spring 2005 02/04/05

Behavioral Non-Blocking Assignments

always @(posedge clk)
begin
x = next_x;

end
D Q Xnext_x

clk

always @(posedge clk)
begin
x <= next_x;

end
D Q Xnext_x

clk

always @(posedge clk)
begin
x = next_x;
y = x;

end

always @(posedge clk)
begin
x <= next_x;
y <= x;

end

D Q Ynext_x

clk

X
D Q

X
next_x

clk

D Q Y

clk

L02 – Verilog 416.884 – Spring 2005 02/04/05

Behavioral Non-Blocking Assignments

always @(posedge clk)
begin
y = x;
x = y;

end

always @(posedge clk)
begin
y <= x;
x <= y;

end
X Y

D Q

clk

X

D

clk

YQ

Take Away Point - always ask
yourself “Do I need blocking or

non-blocking assignments for this
always block?”

Never mix and match!

L02 – Verilog 426.884 – Spring 2005 02/04/05

Which abstraction is the right one?
Designers usually use a mix of all three! Early on in
the design process they might use mostly behavioral

models. As the design is refined, the behavioral
models begin to be replaced by dataflow models.

Finally, the designers use automatic tools to
synthesize a low-level gate-level model.

Behavioral

DataflowGate-Level

L02 – Verilog 436.884 – Spring 2005 02/04/05

Revisiting Logic Synthesis

Behavioral Modern tools are able to
synthesize more and more
behavioral Verilog code

directly to the gate-level

Gate-Level

Dataflow The problem though, is
that it is very hard to

predict what the generated
hardware will look like

This makes it difficult to
perform rational design

space exploration

L02 – Verilog 446.884 – Spring 2005 02/04/05

Revisiting Logic Synthesis

Behavioral In this course we will
mostly stick to very

predictable dataflow to
gate-level synthesis – we
want to have a good idea
what kind of hardware we

are generating!

Gate-Level

Dataflow

L02 – Verilog 456.884 – Spring 2005 02/04/05

Writing Parameterized Models
module mux4 #(parameter width)

(input [width-1:0] a, b, c, d
input [1:0] sel,
output [width-1:0] out);

...
endmodule
// Specify parameters at instantiation time
mux4 #(.width(32))

alu_mux(.a(op1), .b(bypass), .c(32’b0), .d(32’b1),
.sel(alu_mux_sel), .out(alu_mux_out));

Parameters enable static configuration of modules at
instantiation time and can greatly increase the

usefulness of your modules

L02 – Verilog 466.884 – Spring 2005 02/04/05

Writing Parameterized Models

module adder #(parameter width)
(input [width-1:0] op1,op2,
output cout,
output [width-1:0] sum);

wire [width-1:0] carry;
assign carry[0] = 0;
assign cout = carry[width]
genvar i;
generate
for (i = 0; i < width; i = i+1)
begin : ripple
FA fa(op1[i], op2[i],

carry[i], carry[i+1]);
end

endgenerate

endmodule

Generate blocks can
use parameters to

instantiate a variable
number of sub-modules
or to create a variable

number of nets

L02 – Verilog 476.884 – Spring 2005 02/04/05

Static Elaboration

Model

Synthesis

Gate-Level

Elaborated Model

Static Elaboration

L02 – Verilog 486.884 – Spring 2005 02/04/05

Larger Examples
Let’s briefly examine two larger digital designs

and consider the best way to model
these designs in Verilog

GCD Beta

L02 – Verilog 496.884 – Spring 2005 02/04/05

GCD Behavioral Example
module gcd_behavioral #(parameter width = 16)

(input [width-1:0] A_in, B_in,
output [width-1:0] Y);

reg [width-1:0] A, B, Y, swap;
integer done;
always @(A_in or B_in)
begin
done = 0;
A = A_in; B = B_in;
while (!done)
begin
if (A < B)
begin
swap = A;
A = B;
B = swap;

end
else if (B != 0)
A = A - B;

else
done = 1;

end
Y = A;

end
endmodule

We write the general
algorithm in an always block
using a very C-like syntax

L02 – Verilog 506.884 – Spring 2005 02/04/05

GCD Behavioral
Test Harness

module gcd_test;
parameter width = 16;
reg [width-1:0] A_in, B_in;
wire [width-1:0] Y;
gcd_behavioral #(.width(width))

gcd_unit(.A_in(A_in), .B_in(B_in), .Y(Y));
initial
begin
// Default inputs if cmdline args
// are not provided
A_in = 27;
B_in = 15;
// Read in cmdline args
$value$plusargs("a-in=%d",A_in);
$value$plusargs("b-in=%d",B_in);
// Let the simulation run
#10;
// Output the results
$display(" a-in = %d", A_in);
$display(" b-in = %d", B_in);
$display(" gcd-out = %d", Y);
$finish;

end
endmodule

We use a test harness to drive
the GCD module. The test
harness includes an initial block,
which is similar to always block
except it executes only once at
time = 0.

Special directives which begin
with $ enable the test harness
to read command line arguments,
use file IO, print to the screen,
and stop the simulation

L02 – Verilog 516.884 – Spring 2005 02/04/05

GCD RTL Example

A

B

zero? lt

sub

Control Unit

Design Strategy
Partition into control and datapath

Keep all functional code in the leaf modules

Design Strategy
Partition into control and datapath

Keep all functional code in the leaf modules

A_in

go done

out

B_in

L02 – Verilog 526.884 – Spring 2005 02/04/05

GCD RTL Datapath
module gcd_dpath #(parameter width = 16)

(input clock,
input A_en, B_en, A_mux_sel, B_mux_sel, out_mux_sel,
input [width-1:0] A_in, B_in,
output B_zero, A_lt_B,
output [width-1:0] Y);

reg [width-1:0] A, B;
assign Y = A;
// Datapath logic
wire [width-1:0] out = (out_mux_sel) ? B : A - B;
wire [width-1:0] A_next = (A_mux_sel) ? out : A_in;
wire [width-1:0] B_next = (B_mux_sel) ? A : B_in;
// Generate output control signals
wire B_zero = (B == 0);
wire A_lt_B = (A < B);
// Edge-triggered flip-flops
always @(posedge clock)
begin
if (A_en)
A <= A_next;

if (B_en)
B <= B_next;

end
endmodule

Edge-triggered
flip-flops with
enables

A mix of dataflow
and behavioral

L02 – Verilog 536.884 – Spring 2005 02/04/05

GCD RTL Control Unit
module gcd_ctrl (input clock, reset, go,

input B_zero, A_lt_B,
output A_en, B_en, A_mux_sel, B_mux_sel, out_mux_sel,
output done);

// The running bit is one after go goes high and until done goes high
reg running = 0;
always @(posedge clock)
begin
if (go) running <= 1;
else if (done) running <= 0;

end
// Combinational control logic - we group all the control signals
// onto one bus to make the Verilog more concise
reg [5:0] ctrl_sig;
assign { A_en, B_en, A_mux_sel, B_mux_sel, out_mux_sel, done } = ctrl_sig;
always @(*)
begin
if (!running) ctrl_sig = 6'b11_00x_0; // Latch in A and B values
else if (A_lt_B) ctrl_sig = 6'b11_111_0; // A <= B and B <= A
else if (!B_zero) ctrl_sig = 6'b10_1x0_0; // A <= A - B and B <= B
else ctrl_sig = 6'b00_xxx_1; // Done

end
endmodule

L02 – Verilog 546.884 – Spring 2005 02/04/05

GCD Testing
We use the same test inputs to test both the

behavioral and the RTL models. If both models
have the exact same observable behavior then the

RTL model has met the functional specification.

Behavioral
Model

RTL
Model

Identical
Outputs?

Test Inputs

L02 – Verilog 556.884 – Spring 2005 02/04/05

Beta Redux

PC+4+4*SXT(C)

ASEL 01

Data Memory
RD

WD

Adr

R/W

WDSEL0 1 2

WARc: <25:21>
0

1XP

PC

JT

+4

Instruction
Memory

A

D

Rb: <15:11>Ra: <20:16>
RA2SEL

Rc: <25:21>

+
Register

File
RA1 RA2

RD1 RD2

BSEL01

C: SXT(<15:0>)
Z

ALU
A B

JT

WA WD

WE

ALUFN

Control Logic

Z

ASEL
BSEL

PCSEL
RA2SEL

WDSEL
ALUFN
Wr

PC+4

0 1

Wr

01234

XAdr
ILL
OP

WASEL

WASEL

IRQ

WERF

WERF

00

PCSEL

I thought I already did
6.004

L02 – Verilog 566.884 – Spring 2005 02/04/05

Goals for the Beta Verilog Description
Readable, correct code that clearly

captures the architecture diagram – “correct by inspection”

Partition the design into regions appropriate for different
implementation strategies. Big issue: wires are “bad” since they
take up area and have capacitance (impacting speed and power).
– Memories: very dense layouts, structured wires pretty much route

themselves, just a few base cells to design & verify.

– Datapaths: each cell contains necessary wiring, so replicating cells (for N
bits of datapath) also replicates wiring. Data flows between columnar
functional units on horizontal busses and control flows vertically.

– Random Logic: interconnect is “random” but library of cells can be
designed ahead of time and characterized.

– Think about physical partition since wires that cross boundaries can take
lots of area and blocks have to fit into the floorplan without wasteful
gaps.

L02 – Verilog 576.884 – Spring 2005 02/04/05

Hey! What happened to abstraction?

Wasn’t the plan to
abstract-away the physical
details so we could
concentrate on getting the
functionality right? Why
are we worrying about wires
and floorplans at this stage?

Because life is short! If you
have the luxury of writing two
models (the first to experiment
with function, the second to
describe the actual partition you
want to have), by all means! But
with a little experience you can
tackle both problems at once.

L02 – Verilog 586.884 – Spring 2005 02/04/05

Divide and Conquer

PC+4+4*SXT(C)

ASEL 01

Data Memory

RD

WD

Adr

R/W

WDSEL0 1 2

WARc: <25:21>
0

1XP

PC

JT

+4

Instruction
Memory

A

D

Rb: <15:11>Ra: <20:16>
RA2SEL

Rc: <25:21>

+
Register

File
RA1 RA2

RD1 RD2

BSEL01

C: SXT(<15:0>)
Z

ALU
A B

JT

WA WD

WE

ALUFN

Control Logic

Z

ASEL
BSEL

PCSEL
RA2SEL

WDSEL
ALUFN
Wr

PC+4

0 1

Wr

01234

XAdr
ILL
OP

WASEL

WASEL

IRQ

WERF

WERF

00

PCSEL Step 1: identify memories
1

1

1

Step 2: identify datapaths

2

2

PC

Main Datapath

What’s left is random logic …

L02 – Verilog 596.884 – Spring 2005 02/04/05

Take Away Points
Hardware description languages are an essential
part of modern digital design
– HDLs can provide an executable functional specification
– HDLs enable design space exploration early in design process
– HDLs encourage the development of automated tools
– HDLs help manage complexity inherent in modern designs

Verilog is not a software programming language so
always be aware of how your Verilog code will map
into real hardware

Carefully plan your module hierarchy since this will
influence many other parts of your design

L02 – Verilog 606.884 – Spring 2005 02/04/05

Laboratory 1
You will be building an RTL model of a

two-stage MIPS processor

1. Read through the lab and the SMIPS processor
spec which is posted on the website

2. Look over the Beta Verilog posted on the website
3. Try out the GCD Verilog example in 38-301

(or on any Athena/Linux machine)

4. Next week’s tutorial will review the Beta
implementation and describe how to use Lab 1
toolchain (vcs, virsim, smips-gcc)

% setup 6.884
% cp –r /mit/6.884/examples/gcd .
% cat gcd/README

