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Digital Design Using Verilog
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always @(posedge clk) begin

assign pcinc = pc + 4;

module beta(clk,reset,irq
,…

Input [31:0] mem_data;

endmoduleIf (done) $finish;

for (i=0; i < 31; i = i+1) begin
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Hardware Description Languages

In the beginning designs involved just a few 
gates, and thus it was possible to verify these 

circuits on paper or with breadboards
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Hardware Description Languages

As designs grew larger and more complex, designers 
began using gate-level models described in a 
Hardware Description Language to help with 

verification before fabrication
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Hardware Description Languages
When designers began working 
on 100,000 gate designs, these 
gate-level models were too low-
level for the initial functional 
specification and early high-

level design exploration
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Hardware Description Languages
Designers again turned to HDLs
for help – abstract behavioral 

models written in an HDL 
provided both a precise 

specification and a framework 
for design exploration
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Advantages of HDLs
Allows designers to talk about what the hardware 
should do without actually designing the hardware 
itself, or in other words HDLs allow designers to 
separate behavior from implementation at various 
levels of abstraction

HDLs do this with   
modules and interfaces
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Advantages of HDLs
Allows designers to talk about what the hardware 
should do without actually designing the hardware 
itself, or in other words HDLs allow designers to 
separate behavior from implementation at various 
levels of abstraction
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Advantages of HDLs
Allows designers to talk about what the hardware 
should do without actually designing the hardware 
itself, or in other words HDLs allow designers to 
separate behavior from implementation at various 
levels of abstraction
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Advantages of HDLs
Allows designers to talk about what the hardware 
should do without actually designing the hardware 
itself, or in other words HDLs allow designers to 
separate behavior from implementation at various 
levels of abstraction
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Advantages of HDLs
Allows designers to talk about what the hardware 
should do without actually designing the hardware 
itself, or in other words HDLs allow designers to 
separate behavior from implementation at various 
levels of abstraction
– Designers can develop an executable functional specification 

that documents the exact behavior of all the components and 
their interfaces

– Designers can make decisions about cost, performance, 
power, and area earlier in the design process

– Designers can create tools which automatically manipulate 
the design for verification, synthesis, optimization, etc.
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A Tale of Two HDLs

Harder to learn and use, DoD
mandate

Gate-level, dataflow, and 
behavioral modeling. 
Synthesizable subset.

Design is composed of entities
each of which can have 
multiple architectures

Extensible types and 
simulation engine

ADA-like verbose syntax, lots 
of redundancy

VHDL Verilog

Easy to learn and use, fast 
simulation

Gate-level, dataflow, and 
behavioral modeling. 
Synthesizable subset.

Design is composed of modules
which have just one 
implementation

Built-in types and logic 
representations

C-like concise syntax
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We will use Verilog …
Advantages
– Choice of many US design teams
– Most of us are familiar with C-like syntax
– Simple module/port syntax is familiar way to organize 

hierarchical building blocks and manage complexity
– With care it is well-suited for both verification                 

and synthesis

Disadvantages
– Some comma gotchas which catch beginners everytime
– C syntax can cause beginners to assume C semantics
– Easy to create very ugly code, good and consistent        

coding style is essential
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An HDL is NOT a
Software Programming Language

Software Programming Language
– Language which can be translated into machine instructions   

and then executed on a computer

Hardware Description Language
– Language with syntactic and semantic support for modeling the 

temporal behavior and spatial structure of hardware

module foo(clk,xi,yi,done);
input [15:0] xi,yi;
output done;

always @(posedge clk)
begin: 

if (!done) begin
if (x == y) cd <= x; 
else (x > y) x <= x - y; 

end
end 

endmodule
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Hierarchical Modeling with Verilog
A Verilog module includes a module name and an 
interface in the form of a port list
– Must specify direction and bitwidth for each port

adder

A B

sumcout

module adder( A, B, cout, sum );
input  [3:0] A, B;
output cout;
output [3:0] sum;
// HDL modeling of 
// adder functionality

endmodule Don’t forget 
the semicolon!
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Hierarchical Modeling with Verilog
A Verilog module includes a module name and an 
interface in the form of a port list
– Must specify direction and bitwidth for each port

– Verilog-2001 introduced a succinct ANSI C style portlist

module adder( input  [3:0] A, B,
output cout,
output [3:0] sum );

// HDL modeling of 4 bit
// adder functionality

endmodule

adder

A B

sumcout
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Hierarchical Modeling with Verilog
A module can contain other modules through 
module instantiation creating a module hierarchy
– Modules are connected together with nets

– Ports are attached to nets either by position or by name

module FA( input a, b, cin
output cout, sum );

// HDL modeling of 1 bit
// adder functionality

endmodule

FA

ba

c

cin

cout
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Hierarchical Modeling with Verilog
A module can contain other modules through 
module instantiation creating a module hierarchy
– Modules are connected together with nets

– Ports are attached to nets either by position or by name

adder

A B

Scout

module adder( input  [3:0] A, B,
output cout,
output [3:0] S );

FA fa0( ... );
FA fa1( ... );
FA fa2( ... );
FA fa3( ... );

endmoduleFA FA FA FA
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Hierarchical Modeling with Verilog
A module can contain other modules through 
module instantiation creating a module hierarchy
– Modules are connected together with nets

– Ports are attached to nets either by position

adder

A B

Scout

FA FA FA FA

module adder( input  [3:0] A, B,
output cout,
output [3:0] S );

wire c0, c1, c2;
FA fa0( A[0], B[0], 0,  c0, S[0] );
FA fa1( A[1], B[1], c0, c1, S[1] );
FA fa2( A[2], B[2], c1, c2, S[2] );
FA fa3( A[3], B[3], c2, cout, S[3] );

endmodule
Carry Chain
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Hierarchical Modeling with Verilog
A module can contain other modules through 
module instantiation creating a module hierarchy
– Modules are connected together with nets

– Ports are attached to nets either by position or by name

adder

A B

Scout

module adder( input  [3:0] A, B,
output cout,
output [3:0] S );

wire c0, c1, c2;
FA fa0( .a(A[0]), .b(B[0]), 

.cin(0), .cout(c0),

.sum(S[0] );
FA fa1( .a(A[1]), .b(B[1]),

...

endmodule

FA FA FA FA
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Verilog Basics

Data Values Numeric Literals

0  1 
X  Z

4’b10_11
Underscores 
are ignored

Base format
(d,b,o,h)

Decimal number 
representing size in bits

32’h8XXX_XXA3
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3 Common Abstraction Levels

Behavioral
Module’s high-level algorithm is 
implemented with little concern 

for the actual hardware

Gate-Level

Dataflow
Module is implemented by 
specifying how data flows 

between registers

Module is implemented in terms 
of concrete logic gates (AND, 

OR, NOT) and their 
interconnections
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3 Common Abstraction Levels

Behavioral Designers can create 
lower-level models from 
the higher-level models 

either manually or 
automatically

Gate-Level

Dataflow The process of 
automatically generating a 

gate-level model from 
either a dataflow or a 

behavioral model is called 

Logic Synthesis
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Gate-Level : 4-input Multiplexer
module mux4( input a, b, c, d

input [1:0] sel,
output out );

wire [1:0] sel_b;
not not0( sel_b[0], sel[0] );
not not1( sel_b[1], sel[1] );
wire n0, n1, n2, n3;
and and0( n0, c, sel[1]   );
and and1( n1, a, sel_b[1] );
and and2( n2, d, sel[1]   );
and and3( n3, b, sel_b[1] );
wire x0, x1;
nor nor0( x0, n0, n1 );
nor nor1( x1, n2, n3 );
wire y0, y1;
or or0( y0, x0, sel[0]   );
or or1( y1, x1, sel_b[0] );
nand nand0( out, y0, y1 );

endmodule

sel[0]

sel[1]

c

a

d

b

out 

Basic logic gates are built-in 
primitives meaning there is no 
need to define a module for 

these gates
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Dataflow : 4-input Multiplexer

module mux4( input a, b, c, d
input [1:0] sel,
output out );

wire out, t0, t1;
assign t0  = ~( (sel[1] & c) | (~sel[1] & a) );
assign t1  = ~( (sel[1] & d) | (~sel[1] & b) );
assign out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );

endmodule

This is called a continuous assignment
since the RHS is always being evaluated 

and the result is continuously being 
driven onto the net on the LHS
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Dataflow : 4-input Multiplexer

module mux4( input a, b, c, d
input [1:0] sel,
output out );

wire t0  = ~( (sel[1] & c) | (~sel[1] & a) );
wire t1  = ~( (sel[1] & d) | (~sel[1] & b) );
wire out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );

endmodule
An implicit continuous assignment combines 

the net declaration with an assign statement 
and thus is more succinct
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Dataflow : 4-input Mux and Adder
// Four input muxltiplexor
module mux4( input a, b, c, d

input [1:0] sel,
output out );

assign out = ( sel == 0 ) ? a :
( sel == 1 ) ? b :
( sel == 2 ) ? c :
( sel == 3 ) ? d : 1’bx;

endmodule

// Simple four bit adder
module adder( input  [3:0] op1, op2,

output [3:0] sum );
assign sum = op1 + op2;

endmodule

Dataflow style Verilog
enables descriptions 

which are more 
abstract than gate-

level Verilog
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Dataflow : Key Points
Dataflow modeling enables the designer to focus 
on where the state is in the design and how the   
data flows between these state elements without 
becoming bogged down in gate-level details
– Continuous assignments are used to connect   

combinational logic to nets and ports

– A wide variety of operators are available including:

Arithmetic:    + - * / % **
Logical:       ! && ||
Relational:    > < >= <=
Equality:      == != === !===
Bitwise:       ~ & | ^ ^~
Reduction:     & ~& | ~| ^ ^~
Shift:         >> << >>> <<<
Concatenation: { }
Conditional:   ?:

Avoid these 
operators since 

they usually 
synthesize poorly
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Dataflow : Key Points
Dataflow modeling enables the designer to focus 
on where the state is in the design and how the   
data flows between these state elements without 
becoming bogged down in gate-level details
– Continuous assignments are used to connect   

combinational logic to nets and ports

– A wide variety of operators are available including:

Arithmetic:    + - * / % **
Logical:       ! && ||
Relational:    > < >= <=
Equality:      == != === !===
Bitwise:       ~ & | ^ ^~
Reduction:     & ~& | ~| ^ ^~
Shift:         >> << >>> <<<
Concatenation: { }
Conditional:   ?:

assign signal[3:0] 
= { a, b, 2’b00 }



L02 – Verilog 296.884 – Spring 2005 02/04/05

Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( a or b or c or d or sel )
begin
if ( sel == 0 )
out = a;

else if ( sel == 1 )
out = b

else if ( sel == 2 )
out = c

else if ( sel == 3 )
out = d    

end

endmodule

An always block is a behavioral 
block which contains a list of 
expressions which are (usually) 

evaluated sequentially

The code in an always block can 
be very abstract (similar to C 

code) – here we implement a mux
with an if/else statement
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( a or b or c or d or sel )
begin
if ( sel == 0 )
out = a;

else if ( sel == 1 )
out = b

else if ( sel == 2 )
out = c

else if ( sel == 3 )
out = d    

end

endmodule

An always block can include a 
sensitivity list – if any of these 
signals change then the always 

block is executed
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( a, b, c, d, sel )
begin
if ( sel == 0 )
out = a;

else if ( sel == 1 )
out = b

else if ( sel == 2 )
out = c

else if ( sel == 3 )
out = d    

end

endmodule

In Verilog-2001 we can use a 
comma instead of the or
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( a, b, c, d, sel )
begin
if ( sel == 0 )
out = a;

else if ( sel == 1 )
out = b

else if ( sel == 2 )
out = c

else if ( sel == 3 )
out = d    

end

endmodule

What happens if we accidentally 
leave off a signal on the 

sensitivity list?

The always block will not 
execute if just d changes – so if      
sel == 3 and d changes then 

out will not be updated

This will cause discrepancies 
between simulated and 

synthesized hardware – there 
are no sensitivity lists in real 

hardware so it would work fine!
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( * )
begin
if ( sel == 0 )
out = a;

else if ( sel == 1 )
out = b

else if ( sel == 2 )
out = c

else if ( sel == 3 )
out = d    

end

endmodule

In Verilog-2001 we can use the 
@(*) construct which creates a 

sensitivity list for all signals 
read in the always block
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( * )
begin
case ( sel )
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

Always blocks can contain case 
statements, for loops, while loops, 

even functions – they enable   
high-level behavioral modeling
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( * )
begin
case ( sel )
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

What about this funny 
reg statement? 
Is this how you create 
a register in Verilog?

No! and whoever 
decided on the reg

syntax really 
messed things up!
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( * )
begin
case ( sel )
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

In Verilog a reg is just a variable –
when you see reg think variable not 

hardware register!

Any assignments in an always block 
must assign to a reg variable – the 
reg variable may or may not actually 

represent a hardware register

If the always block assigns a value to 
the reg variable for all possible 

executions then the reg variable is 
not actually a hardware register
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( * )
begin
case ( sel )
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

What about in this 
situation? Will the 
generated hardware 
include a latch for out?
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( * )
begin
case ( sel )
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

Maybe! What if sel == xx? 
Then out is unassigned and 
the hardware must maintain 
the previous value of out! 
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Behavioral : 4-input Multiplexer 
module mux4( input a, b, c, d

input [1:0] sel,
output out );

reg out;
always @( * )
begin
case ( sel )
default : out = 1’bx;
0 : out = a;
1 : out = b;
2 : out = c;
3 : out = d;

endcase
end

endmodule

Fix it with a default clause 
in the case statement –
then no hardware latch is 
inferred 
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Behavioral Non-Blocking Assignments

always @( posedge clk )
begin
x = next_x;

end
D Q Xnext_x

clk

always @( posedge clk )
begin
x <= next_x;

end
D Q Xnext_x

clk

always @( posedge clk )
begin
x = next_x;
y = x;

end

always @( posedge clk )
begin
x <= next_x;
y <= x;

end

D Q Ynext_x

clk

X
D Q

X
next_x

clk

D Q Y

clk
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Behavioral Non-Blocking Assignments

always @( posedge clk )
begin
y = x;
x = y;

end

always @( posedge clk )
begin
y <= x;
x <= y;

end
X    Y

D Q

clk

X

D

clk

YQ

Take Away Point - always ask 
yourself “Do I need blocking or 

non-blocking assignments for this 
always block?”

Never mix and match!
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Which abstraction is the right one?
Designers usually use a mix of all three! Early on in 
the design process they might use mostly behavioral 

models. As the design is refined, the behavioral 
models begin to be replaced by dataflow models. 

Finally, the designers use automatic tools to 
synthesize a low-level gate-level model.

Behavioral

DataflowGate-Level
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Revisiting Logic Synthesis

Behavioral Modern tools are able to 
synthesize more and more 
behavioral Verilog code 

directly to the gate-level

Gate-Level

Dataflow The problem though, is 
that it is very hard to 

predict what the generated 
hardware will look like

This makes it difficult to 
perform rational design 

space exploration
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Revisiting Logic Synthesis

Behavioral In this course we will 
mostly stick to very 

predictable dataflow to 
gate-level synthesis – we 
want to have a good idea 
what kind of hardware we 

are generating!

Gate-Level

Dataflow
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Writing Parameterized Models
module mux4 #( parameter width )

( input  [width-1:0] a, b, c, d
input [1:0] sel,
output [width-1:0] out );

...
endmodule
// Specify parameters at instantiation time
mux4 #( .width(32) )

alu_mux( .a(op1), .b(bypass), .c(32’b0), .d(32’b1),
.sel(alu_mux_sel), .out(alu_mux_out) );

Parameters enable static configuration of modules at 
instantiation time and can greatly increase the 

usefulness of your modules
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Writing Parameterized Models

module adder #( parameter width )
( input  [width-1:0] op1,op2,
output cout,
output [width-1:0] sum );

wire [width-1:0] carry;
assign carry[0] = 0;
assign cout = carry[width]
genvar i;
generate
for ( i = 0; i < width; i = i+1 )
begin : ripple
FA fa( op1[i], op2[i], 

carry[i], carry[i+1] );
end

endgenerate

endmodule

Generate blocks can 
use parameters to 

instantiate a variable 
number of sub-modules 
or to create a variable 

number of nets
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Static Elaboration

Model

Synthesis

Gate-Level

Elaborated Model

Static Elaboration
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Larger Examples
Let’s briefly examine two larger digital designs  

and consider the best way to model              
these designs in Verilog

GCD Beta
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GCD Behavioral Example
module gcd_behavioral #( parameter width = 16 )

( input [width-1:0] A_in, B_in,
output [width-1:0] Y );

reg [width-1:0] A, B, Y, swap;
integer done;
always @( A_in or B_in )
begin
done = 0;
A = A_in; B = B_in;
while ( !done )
begin
if ( A < B )
begin
swap = A;
A = B;
B = swap;

end
else if ( B != 0 )
A = A - B;

else
done = 1;

end
Y = A;

end
endmodule

We write the general 
algorithm in an always block 
using a very C-like syntax
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GCD Behavioral 
Test Harness

module gcd_test;
parameter width = 16;
reg [width-1:0] A_in, B_in;
wire [width-1:0] Y;
gcd_behavioral #( .width(width) ) 

gcd_unit( .A_in(A_in), .B_in(B_in), .Y(Y) );
initial
begin
// Default inputs if cmdline args
// are not provided
A_in = 27;
B_in = 15;
// Read in cmdline args
$value$plusargs("a-in=%d",A_in);
$value$plusargs("b-in=%d",B_in);
// Let the simulation run
#10;
// Output the results
$display(" a-in    = %d", A_in );
$display(" b-in    = %d", B_in );
$display(" gcd-out = %d", Y    );
$finish;

end
endmodule

We use a test harness to drive 
the GCD module. The test 
harness includes an initial block, 
which is similar to always block 
except it executes only once at 
time = 0.

Special directives which begin 
with $ enable the test harness 
to read command line arguments, 
use file IO, print to the screen, 
and stop the simulation
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GCD RTL Example

A

B

zero? lt

sub

Control Unit

Design Strategy
Partition into control and datapath

Keep all functional code in the leaf modules

Design Strategy
Partition into control and datapath

Keep all functional code in the leaf modules

A_in

go done

out

B_in
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GCD RTL Datapath
module gcd_dpath #( parameter width = 16 )

( input clock,
input A_en, B_en, A_mux_sel, B_mux_sel, out_mux_sel,
input  [width-1:0] A_in, B_in,
output B_zero, A_lt_B,
output [width-1:0] Y );

reg [width-1:0] A, B;
assign Y = A;
// Datapath logic
wire [width-1:0] out    = ( out_mux_sel ) ? B : A - B;
wire [width-1:0] A_next = ( A_mux_sel ) ? out : A_in;
wire [width-1:0] B_next = ( B_mux_sel ) ? A : B_in;
// Generate output control signals
wire B_zero = ( B == 0 );
wire A_lt_B = ( A < B );
// Edge-triggered flip-flops
always @( posedge clock )
begin
if ( A_en ) 
A <= A_next;

if ( B_en ) 
B <= B_next;  

end
endmodule

Edge-triggered 
flip-flops with 
enables

A mix of dataflow 
and behavioral
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GCD RTL Control Unit
module gcd_ctrl ( input clock, reset, go, 

input B_zero, A_lt_B,
output A_en, B_en, A_mux_sel, B_mux_sel, out_mux_sel,
output done );

// The running bit is one after go goes high and until done goes high
reg running = 0;  
always @( posedge clock )
begin
if ( go )        running <= 1;
else if ( done ) running <= 0;    

end
// Combinational control logic - we group all the control signals
// onto one bus to make the Verilog more concise
reg [5:0] ctrl_sig;
assign { A_en, B_en, A_mux_sel, B_mux_sel, out_mux_sel, done } = ctrl_sig;
always @(*)
begin
if ( !running )      ctrl_sig = 6'b11_00x_0; // Latch in A and B values
else if ( A_lt_B )   ctrl_sig = 6'b11_111_0; // A <= B and B <= A
else if ( !B_zero )  ctrl_sig = 6'b10_1x0_0; // A <= A - B and B <= B
else ctrl_sig = 6'b00_xxx_1; // Done

end
endmodule
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GCD Testing
We use the same test inputs to test both the 

behavioral and the RTL models.  If  both models 
have the exact same observable behavior then the 

RTL model has met the functional specification.

Behavioral
Model

RTL
Model

Identical
Outputs?

Test Inputs
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Beta Redux
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Goals for the Beta Verilog Description
Readable, correct code that clearly                       

captures the architecture diagram – “correct by inspection”

Partition the design into regions appropriate for different 
implementation strategies. Big issue: wires are “bad” since they
take up area and have capacitance (impacting speed and power).
– Memories: very dense layouts, structured wires pretty much route 

themselves, just a few base cells to design & verify.

– Datapaths: each cell contains necessary wiring, so replicating cells (for N 
bits of datapath) also replicates wiring.  Data flows between columnar 
functional units on horizontal busses and control flows vertically.

– Random Logic: interconnect is “random” but library of cells can be 
designed ahead of time and characterized.

– Think about physical partition since wires that cross boundaries can take 
lots of area and blocks have to fit into the floorplan without wasteful 
gaps.
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Hey! What happened to abstraction?

Wasn’t the plan to 
abstract-away the physical 
details so we could 
concentrate on getting the 
functionality right?  Why 
are we worrying about wires 
and floorplans at this stage?

Because life is short!  If you 
have the luxury of writing two 
models (the first to experiment 
with function, the second to 
describe the actual partition you 
want to have), by all means!  But 
with a little experience you can 
tackle both problems at once.
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Divide and Conquer
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What’s left is random logic …
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Take Away Points
Hardware description languages are an essential 
part of modern digital design
– HDLs can provide an executable functional specification
– HDLs enable design space exploration early in design process
– HDLs encourage the development of automated tools
– HDLs help manage complexity inherent in modern designs

Verilog is not a software programming language so 
always be aware of how your Verilog code will map 
into real hardware

Carefully plan your module hierarchy since this will 
influence many other parts of your design
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Laboratory 1
You will be building an RTL model of a 

two-stage MIPS processor

1. Read through the lab and the SMIPS processor 
spec which is posted on the website

2. Look over the Beta Verilog posted on the website
3. Try out the GCD Verilog example in 38-301                   

(or on any Athena/Linux machine)

4. Next week’s tutorial will review the Beta 
implementation and describe how to use Lab 1 
toolchain (vcs, virsim, smips-gcc)

% setup 6.884
% cp –r /mit/6.884/examples/gcd .
% cat gcd/README


