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Two-Level Boolean Minimization 

Two-level Boolean minimization is used to find a sum-of-products representation for a multiple-
output Boolean function that is optimum according to a given cost function.  The typical cost 
functions used are the number of product terms in a two-level realization, the number of literals, 
or a combination of both. The two steps in two-level Boolean minimization are: 

1.  Generation of the set of prime product-terms for a given function. 

2.  Selection of a minimum set of prime terms to implement the function. 

We will briefly describe the Quine-McCluskey method which was the first algorithmic method 
proposed for two-level minimization and which follows the two steps outlined above.  State-of-
the-art logic minimization algorithms are all based on the Quine McCluskey method and also 
follow the two steps above.  

Prime Term Generation 

The Quine-McCluskey method is best illustrated with an example.  Consider the completely 
specified Boolean function shown in (1A).  It has been represented as a list of 0-terms, which are 
fully specified product terms with no don't-care entries.  Next, each 0-term has an associated 
decimal value obtained by converting the binary number represented by the 0-term into a decimal 
number—for instance the value of 0000 is 0 and that of 1110 is 14.  Each pair of 0-terms is 
checked to see if they can be merged into a single 1-term.  Two 0-terms can be merged if they 
differ in exactly one position.  The terms generated in our example by merging the pairs of 0-
terms are shown in (1B).  These terms are called 1-terms because they have exactly one “—“ 
entry.  Next, these l-terms are examined in pairs to see if they can be merged into 2-terms.  This 
can only be done if the 1-terms differ in exactly one position and they have their “—“ literal in the 
same position.  Two 2-terms can be formed as shown in (1C).  If a k-term is formed by merging 
two (k-l)-terms, then the two (k-1) l-terms are not primes and are marked so that they can be 
discarded later.  The process ends when no merging is possible in the final set of L-terms.  The 
unmarked k-terms, where O < k < L, are the complete set of prime terms of the function.  The five 
prime terms for the function in this example are in bold type and labelled [A] through [E].  In the 
case of incompletely specified functions the initial list of 0-terms includes those 0-terms in the 
ON-set and the DC-set (don't-care set). 

 0   0000      0, 8   -000 [E]    8,9,10,11    10-- [B]
 5   0101      5, 7   01-1 [D]   10,11,14,15   1-1- [A]
 7   0111      7,15   -111 [C]
 8   1000      8, 9   100-
 9   1001      8,10   10-0
10   1010      9,11   10-1
11   1011     10,11   101-
14   1110     10,14   1-10
15   1111     11,15   1-11
              14,15   111-

(1A) 0-terms        (1B) 1-terms                                  (1C) 2-terms  

Prime Term Table 

We now construct the prime term table as shown below.  The rows of the prime term table are the 
0-terms of the ON-set of the function (we do not need to choose 0-terms in the DC-set) and the 
columns are the prime terms.  An "X" in the prime term table in row i and column j signifies that 
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the 0-term corresponding to row i is contained by the prime corresponding to column j.  For 
instance, the 0-term 0000 is contained only by prime E, -000. 

        A  B  C  D  E
0000    .  .  .  .  X
0101    .  .  .  X  .
0111    .  .  X  X  .
1000    .  X  .  .  X
1001    .  X  .  .  .
1010    X  X  .  .  .
1011    X  X  .  .  .
1110    X  .  .  .  .
1111    X  .  X  .  .  

Given the prime term table, we have to select a minimum set of primes (columns) such that there 
is at least one X in every row.  This is the classical minimum covering problem. 

Essential Prime Terms 

A row with a single X signifies an essential prime term.  Any prime implementation for the 
function will have to include the prime that contains the 0-term corresponding to this row because 
this 0-term is not contained by any other prime (column).  In the prime term table above A, B, D, 
and E are essential prime terms. 

We select the essential prime terms since they have to be included in any prime implementation.  
This results in an implementation for the function, since selecting A, B, D, and E results in an X 
in each row.  

Dominated Columns 

Some functions may not have essential prime terms.  Consider the hypothetical prime term table 
shown in (2A).  There is no row with a single X.  It is necessary to make an arbitrary selection of 
a prime to begin with.  Assume that prime A is selected.  We obtain the reduced table of (2B) 
after deleting column A and the two rows contained by A, namely 0000 and 0001.  A column U 
of a prime term table is said to dominate another column V if U contains every row contained by 
V.  In the reduced table of (2B) column B is dominated by column C and column H is dominated 
by column G.  We can delete the dominated columns, since selecting the dominating column will 
result in covering more uncontained 0-terms than the dominated column.  Note that the 
dominating column might not exist in a minimum solution. 

     A B C D E F G H         B C D E F G H            C D E F G
0000 X . . . . . . X    0101 X X . . . . .       0101 X . . . .
0001 X X . . . . . .    0111 . X X . . . .       0111 X X . . .
0101 . X X . . . . .    1000 . . . . . X X       1000 . . . . X
0111 . . X X . . . .    1010 . . . . X X .       1010 . . . X X
1000 . . . . . . X X    1110 . . . X X . .       1110 . . X X .
1010 . . . . . X X .    1111 . . X X . . .       1111 . X X . .
1110 . . . . X X . .
1111 . . . X X . . .

           (2A) Prime table                    (2B) Table with A selected       (2C) Table with B & H removed  

Reducing the table (2B) gives the table of (2C).  In this table C and G are relatively essential 
prime terms.  (They are not essential to the original table but become essential given the selection 
of prime A.)  Choosing C and G results in the selection of E, which completes the implementation 
f = {A, C, E, G}. We are not guaranteed that this implementation is minimum; we have to 
backtrack to our arbitrary choice of selecting prime A and delete prime A from the table, i.e., 
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explore the possibility of constructing an implementation that does not have A in it. This results 
in f = {B, D, F, H}.  

A Branch Covering Strategy 

The covering procedure of the Quine-McCluskey method is summarized below.  The input to the 
procedure is the prime term table T.  

1. Delete the dominated primes (columns) in T.  Detect essential primes in T by checking to 
see if any 0-term is contained by a single prime.  Add these essential primes to the selected 
set.  Repeat until no new essential primes are detected.  

2. If the size of the selected set of primes equals or exceeds the best solution thus far return 
from this level of recursion.  If there are no elements left to be contained, declare the 
selected set as the best solution recorded thus far. 

3. Heuristically select a prime.  

4. Add the chosen prime to the selected set and create a new table by deleting the prime and 
all 0-terms that are contained by this prime in the original table.  Set T to this new table and 
go to Step 1. 
 
Then, create a new table by deleting the chosen prime from the original table without 
adding it to the selected set.  No 0-terms are deleted from the original table. Set T to this 
new table and go to Step 1.  

Multiple-Output Functions 

An advantage of the Quine-McCluskey method is that it is generalized to functions with multiple 
outputs.  Suppose we have a multiple-output function f = {f1, ..., fm}.  Each term in f has an input 
part and an output part.  The output part indicates which of the ON-sets of the fj’s that the 0-term 
belongs to.  If the 0-term belongs to the jth output, then the jth position of the output part has a 1.  
For example, the two-output function f = {f1, f2} where f1 = and(x1,x2) and f2 = and(x2,x3) can be 
represented as: 

11-  10 
-11  01 

We can represent the 0-terms of each output separately as: 

110  10 
111  10 
011  01 
111  01 

The 0-terms for the multiple-output function are: 

011  01 
110  10 
111  11 

The primes are generated given the 0-terms for the multiple-output function immediately above in 
a manner similar to single-output case. Two 0-terms are merged into a l-term if their input parts 
differ in exactly one bit and their output parts intersect, i.e., have at least one output in common.  
The l-term formed will have a “-“ entry in the input bit which was different across the 0-terms 
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and will have an output part equaling the intersection (bitwise AND) of the two output parts of the 
0-terms, i.e., will have a 1 in all positions where both the 0-terms have a 1, and O's in all other 
positions.  A similar procedure is followed for generating k-terms from (k- l)-terms. 

A (k-1)-term is a prime term if it is not completely contained in any k-term.  In the case of 
multiple-output functions, two (k-1)-terms may generate a k-term but neither (k-1)-term may be 
completely contained in the k-term.  This happens when the output parts of the two (k-1)-terms 
intersect, but are not equal. 

Once all the prime terms have been generated, the prime term table is constructed.  The columns 
of the prime term table are primes and the rows correspond to the 0-terms of the different outputs 
listed separately.  A minimum selection of primes such that there is an X in every row 
corresponds to a minimum implementation of the multiple-output function. 

An example of using the Quine-McCluskey method on a two-output function is shown below. In 
(3A) the 0-terms are listed separately for each output.  The numbers to the left of the 0-terms 
correspond to the decimal value of the 0-term, including both the input and output part of the 
term.  For example term 001  10 has the decimal value 6. 

 6  001 10       5,6    001 11      5,6,13,14  0-1 11 [A]
14  011 10       13,14  011 11      6,22       -01 10 [B]
18  100 10       18     100 10      13,29      -11 01 [C]
22  101 10       22     101 10      18,22      10- 10 [D]
                 25     110 01      25,29      11- 01 [E]
 5  001 01       29     111 01
13  011 01
25  110 01
29  111 01

(3A) 0-terms                 (3B) 0-terms for multiple                         (3C) 1-terms
                                              output function  

In (3B), the 0-terms for the multiple-output function are listed.  Some of these 0-terms have more 
than one 1 in their output parts, for example, the 0-term 001 11.  These 0-terms are merged in a 
pairwise manner to generate the 1-terms of (3C).  For example, the 0-terms 001 11 and 101 
10 differ in one bit in their input parts and share a 1 in their first position of their output parts.  
Therefore, they can be merged into the 1-term -01 10. 

The 1-terms cannot be merged further and we obtain five prime terms for the two-output function 
A, B, C, D and E as shown in (3C).  The 0-terms in (3B) are all contained in at least one of the 1-
terms and hence no 0-term is a prime term. (This may not always be the case.  Consider two 0-
terms 111 101 and 110 110 corresponding to a three-input, three-output function.  They can 
be merged into the 1-term 11- 100. The 1 term does not completely contain either of the 0-
terms.  It contains the parts of the 0-terms corresponding to the first output, but not the second or 
third outputs.) 

The prime term table for this set of primes is shown below.  Here the columns correspond to the 
five prime terms and the rows are the 0-terms for each output considered separately.  In order to 
obtain an implementation for the function, we need to select a set of prime terms such that there is 
an X in every row. We can identify essential prime terms from this table.  011 10 is only 
covered by prime A hence A is essential.  100 10 is covered only by D hence D is essential. 
Finally, 110 01 is covered only by E hence E is essential.  Selecting A, D and E results in a X 
in every row, and we have a minimum implementation consisting of three prime terms. 
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        A B C D E
001 10  X X . . .
011 10  X . . . .
001 01  X . . . .
011 01  X . X . .
100 10  . . . X .
101 10  . X . X .
110 01  . . . . X
111 01  . . X . X  

Programmable Logic Array Folding 

Once a minimal logic implementation for a multiple-output function has been determined, a 
layout for the PLA can be automatically generated.  The layout for the PLA will reflect the 
transistor-level topology show below. 

A B C f g  

The PLA obtained may be very sparse, i.e., may have a large area but the number of transistors 
in the PLA may be very small.  Layout optimization is required to produce a more efficient 
structure. 

One method of PLA layout optimization is called folding.  In a folded PLA, more than one 
input/output signal can occupy the same column, and/or more than one product term can occupy 
the same row.  There are thus two flavors of folding, column folding and row folding 
corresponding to folding inputs/outputs and folding product term lines.  An example of column 
folding is shown below.  Folding can reduce the area of the PLA by as much as 50%.  The layout 
for folded PLAs is more complicated than for unfolded PLAs, however, the process can still be 
efficiently automated. 
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Sparser PLAs that contain fewer transistors are easier to fold since the constraints associated with 
folding are fewer.  It is important that the logic minimization step produce maximally sparse 
PLAs, i.e., truth-tables with a maximal number of “-“ entries in the AND plane and a minimal 
number of 1’s in the OR plane. 


