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NAME: SCORE:

Please write your name on every page of the quiz.

Not all questions are of equal difficulty, so look over the entire quiz and budget your time carefully.

Please carefully state any assumptions you make.

Enter your answers in the spaces provided below. If you need extra room for an answer or for
scratch work, you may use the back of each page but please clearly indicate where your answer is
located.

A list of useful equations is printed at the end of this quiz. You can detach this sheet for reference
and do not have to hand this in. We will not grade anything written on the equation sheet.

You will also receive a separate handout containing a copy of the relevant Bluespec lecture slides.
We will not grade anything written on the Bluespec slides.

You must not discuss the quiz’s contents with other students who have not yet taken
the quiz. If, prior to taking it, you are inadvertently exposed to material in a quiz —
by whatever means — you must immediately inform the instructor or a TA.

Points Score

Problem 1 22

Problem 2 23

Problem 3 15

Problem 4 20

Problem 5 20
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Problem 1 : Optimizing delay of a sign-extension circuit (22 total points)

Sign-extension is a common operation in arithmetic circuits, where a narrower binary integer is
converted into a wider binary integer by replicating the sign bit in the higher order bits of the
destination. In this question, we examine the delay penalty for extending a 16-bit number to a 64-
bit value. For this problem, assume that the sign bit is generated by a minimum-sized inverter, and
that the sign-extension circuit must eventually drive 49 other minimum-sized inverters. All bits in
the datapath are arranged linearly 20 µm apart. The following table lists various parameters which
you may find useful when solving this problem. Remember that there is a list of useful equations
at the end of this quiz.

Parameters for Minimum-Sized Inverter Symbol Value

Ratio of PMOS to NMOS transistor widths for equal rise/fall times ρ 2

Gate capacitance for PMOS pull-up transistor Cp,g 2 fF

Gate capacitance for NMOS pull-down transistor Cn,g 1 fF

Total parasitic drain capacitance Cd 3 fF

Effective on resistance for PMOS pull-up transistor Rp,on 2 kΩ

Effective on resistance for NMOS pull-down transistor Rn,on 2 kΩ

Parameters for Metal 1 Wire Symbol Value

Wire resistance per unit length Rm1 1 Ω/µm

Wire capacitance per unit length Cm1 0.2 fF/µm
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Part 1.A : Unoptimized delay of sign-extension circuit (9 points)

To begin, we naively use Metal 1 to wire the sign
inverter directly to the 49 output inverters as shown
in the diagram. Use a simple RC delay model to
estimate the delay from the output of the sign inverter
to the input of the inverter in the most-significant bit
(the corresponding path is indicated with a dashed
line). The numbers beside each transistor denote the
width of that transistor normalized to the width of
the NMOS in a minimum sized inverter. Report the
delay as an RC time constant in picoseconds.
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Rwire = Lwire × Rm1 = (48 × 20µm) × 1Ω/µm = 960Ω

Cwire = Lwire × Cm1 + 47 × (Cp,g + Cn,g) = (48 × 20µm) × 0.2fF/µm + 47 × 3fF = 333fF

Cload = (Cp,g + Cn,g) = 3fF
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= 2kΩ × 172.5fF + (2kΩ + 960Ω) × (166.5fF + 3fF)

= 847ps
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Part 1.B : Reducing delay using a multi-stage driver (10 points)

To improve performance you decide to
use the multi-stage driver shown in the
diagram. Notice that this driver design
adheres to the rule-of-thumb mentioned
in class - each driver stage is scaled up by
a factor of four. Again, use a simple RC
delay model to estimate the delay from
the output of the sign inverter, through
inverter A, through inverter B, and to
the input of the inverter in the most-
significant bit (the corresponding path is
indicated with a dashed line). Report the
delay as an RC time constant in picosec-
onds.
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We first determine the RC time constant of the sign inverter and inverter A. We then
determine the RC time constant of the output of inverter B to the input of the inverter in
the most-significant bit. Finally, we add all three time constants together. We are assuming
that after the time constant associated with the sign inverter, inverter A turns on and then
after the time constant associated with inverter A, inverter B turns on, and so on. Note
that Rwire, Cwire, Cload remain the same as in Part 1.A.
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Tsigninv = Ron,signinv × (Cd,signinv + Cg,A) = 2kΩ × (3fF + 12fF) = 30ps

TA = Ron,A × (Cd,A + Cg,B) = 0.5kΩ × (12fF + 48fF) = 30ps

TB+wire =

(
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+ (Ron,B + Rwire) ×
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= 125Ω × 172.5fF + (125Ω + 960Ω) × 169.5fF = 205ps

Delay = Tsigninv + TA + TB+wire = 265ps
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Part 1.C : Further improvements to the multi-stage driver (3 points)

Qualitatively describe another approach which might further decrease the delay of our sign-extension
circuit. Limit your answer to less than three sentences.

The wire delay is dominating the total delay of this path, so we should consider a distributed
driver where the stages are spread along the wire. We could use logical effort or standard
repeater techniques to determine where to place the stages and how to size them.
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Problem 2 : Optimizing delay of branch comparator (23 total points)

The branch comparator in the SMIPS processor requires a comparator that can check whether
32 bits are all equal to zero. The output of the comparator is one if all inputs are zero. In
this problem we will use the logical effort methodology to compare the delay of various branch
comparator implementations. Remember that there is a list of useful equations at the end of this
quiz.

Part 2.A : Optimal delay of an initial implementation (9 points)

The following circuit uses a tree of NAND and NOR gates to implement the branch comparator.
Verify to yourself that the output is one if and only if all 32 inputs are zero. Use the method
of logical effort to estimate the optimal delay (in picoseconds) for this circuit. Assume that the
input capacitance of a 4-input NOR gate is 3 fF and that the branch comparator must drive a
load capacitance of 3 fF. Also assume that the delay unit (τ) for this process is 20 ps and that the
parasitic delay of a minimum-sized inverter is 1.

F = GBH = (9/3)(4/3)(9/3) × 1 × (3/3) = 12

P = 4pinv + 2pinv + 4pinv = 10

D̂ = NF 1/N + P = 3(12)1/3 + 10 = 16.9

D̂abs = D̂τ = 337ps
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Part 2.B : Optimal delay of various NOR/NAND trees (10 points)

We are given a gate library which contains the following four gates: 4-input NAND, 4-input NOR,
2-input NAND, and 2-input NOR. We will now use logical effort to evaluate all of the ways we can
construct the branch comparator from this library. First, fill in the following table with all of the
possible NOR/NAND trees which implement the correct logic function. Remember that the output
of the tree must be one if all of the inputs are zero. You cannot use inverters. To denote a given
NOR/NAND tree simply list the type of gate used in each stage of the tree. For example, the tree
corresponding to Part 2.A is { nor4, nand2, nor4 }, and it is already filled in on the table. Use
the logical effort methodology to fill in the path logical effort (G), the total path effort (F ), the
path parasitic delay (P ), and the optimal path delay (D̂abs) in picoseconds for each NOR/NAND
tree. You should be able to fill in the first row of the table based on your answer from Part 2.A.
Hint: The number of possible NOR/NAND trees is equal to the number of rows in the table. Which
is the fastest implementation?

We did not tell you the input capacitance of a 2-input NOR gate. So if you assumed that both
2-input and 4-input NOR gates had the same input capacitance you would get the following
result.

NOR/NAND Tree G Cin H F F 1/N P N D̂ D̂abs

{ nor4,nand2,nor4 } 12 3 1 12 2.29 10 3 16.9 337ps

{ nor4,nand4,nor2 } 10 3 1 10 2.15 10 3 16.5 329ps

{ nor2,nand4,nor4 } 10 3 1 10 2.15 10 3 16.5 329ps

{ nor2,nand2,nor2,nand2,nor2 } 8.2 3 1 8.2 1.52 10 5 17.6 352ps

A 2-input NOR gate, however, does not have the
same input capacitance as a 4-input NOR gate. The
mosfet diagrams to the right show the two NOR
gates sized assuming: (a) that PMOS transistors are
twice as slow as NMOS, and (b) that we want equal
rise/fall times. The 4-input NOR gate has an in-
put capacitance of 3 fF so the capacitance per unit
of transistor width is 3/9 fF. Thus a reasonable as-
sumption is that the 2-input NOR gate has an input
capacitance of 3/9 × 5 or 1.67 fF.
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NOR/NAND Tree G Cin H F F 1/N P N D̂ D̂abs

{ nor4,nand2,nor4 } 12 3 1.0 12 2.29 10 3 16.9 337ps

{ nor4,nand4,nor2 } 10 3 1.0 10 2.15 10 3 16.5 329ps

{ nor2,nand4,nor4 } 10 1.7 1.8 18 2.62 10 3 17.8 357ps

{ nor2,nand2,nor2,nand2,nor2 } 8.2 1.7 1.8 14.8 1.71 10 5 18.5 371ps
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Part 2.C : Optimal delay for alternative capacitive load (4 points)

Now assume that the branch comparator must drive an output load which is a thousand times
larger (3,000 fF). Which NOR/NAND tree is the fastest implementation? You may answer this
question numerically or with a brief qualitative argument.

Using the implementation with the most stages will help mitigate the increased output load.
More stages increase N and thus the effort portion of the optimal delay decreases. Adding
too many stages, though, will increase the parasitic term of the optimal delay and result in
too little effort per stage. For this problem the five stage tree should perform best with the
larger output load. We show this numerically below.

NOR/NAND Tree G Cin H F F 1/N P N D̂ D̂abs

{ nor4,nand2,nor4 } 12 3 1k 12k 22.9 10 3 78.6 1.6ns

{ nor4,nand4,nor2 } 10 3 1k 10k 21.5 10 3 74.6 1.5ns

{ nor2,nand4,nor4 } 10 1.7 1.8k 18k 26.2 10 3 88.6 1.8ns

{ nor2,nand2,nor2,nand2,nor2 } 8.2 1.7 1.8k 14.8k 6.83 10 5 44.1 882ps
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Problem 3 : Calculating minimum clock period (15 total points)

The following diagram shows a finite state machine built from combinational logic (CL) and D-flip-
flops (DFFs). The table lists the various timing parameters. The initial clock period is 9.

CL1 CL2
D Q D Q

DFF2DFF1
B C

A

clk

Parameters for DFFs Symbol Value

Clock to Q min delay TCQMIN 2

Clock to Q max delay TCQMAX 3

Setup time Tsetup 1

Hold time Thold 5

Parameters for CLs Symbol Value

CL1 min propagation delay TCL1,PDMIN 2

CL1 max propagation delay TCL1,PDMAX 3

CL2 min propagation delay TCL2,PDMIN 4

CL2 max propagation delay TCL2,PDMAX 5

Part 3.A : Identifying timing violation (5 points)

There is a timing violation in this circuit. What is the violation and on what path does it occur?

Hold time violation on DFF1.Q->A->CL1->DFF1.D since TCQMIN + TCL1,PDMIN < Thold
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Part 3.B : Fixing timing violation (5 points)

Assume you have a non-inverting buffer for which TBUF,PDMIN is 2 and TBUF,PDMAX is 3. Draw
a new circuit diagram showing how these buffers can be added to the circuit to resolve the timing
violation.

Add one buffer at node A so that TCQMIN + TBUF,PDMIN + TCL1,PDMIN > Thold

CL1 CL2
D Q D Q

B C

A

clk

buffer

Part 3.C : Final clock period (5 points)

What is the final clock period? How did fixing the timing violation affect the clock period?

Tperiod = TCQMAX + TBUF,PDMAX + TCL1,PDMAX + Tsetup = 10
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Problem 4 : Rule firing in Bluespec (20 total points)

In this problem we will explore the behavior of the two stage pipeline presented in slides L13-3 to
L13-6 (these slides are included at the end of the quiz). You should assume that bu has a maximum
capacity of two instruction templates. You should also assume the following starting state:

• bu holds Tuple2(99, EBz {cond: 0, addr:200})

• pc is 100

• Instruction at address 100 is Add {dst: R3, src1: R1, src2: R2}

• Instruction at address 101 is Add {dst: R6, src1: R4, src2: R5}

• Instruction at address 200 is Add {dst: R9, src1: R4, src2: R7}

Part 4.A : (4 points)

Describe the contents of pc and bu after applying the Fetch&Decode rule.

pc = 101

Instruction templates in bu:

Tuple2(100, EAdd {dst: R3, op1:rf[R1], op2:rf[R2]}) and

Tuple2( 99, EBz {cond: 0, addr: 200})

Part 4.B : (4 points)

Describe the contents of pc and bu after applying the Fetch&Decode rule followed by the Execute

rule.

pc = 200

Instruction templates in bu:

Empty
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Part 4.C : (4 points)

Describe the contents of pc and bu after applying the Execute rule followed by the Fetch&Decode

rule.

pc = 201

Instruction templates in bu:

Tuple2(200, EAdd {dst: R9, op1:rf[R4], op2:rf[R7]})

Part 4.D : (8 points)

We can write a single rule that achieves the effect described in Part 4.C. Fill in the following rule
so that it has the same effect as applying the Execute rule followed by the Fetch&Decode rule.

Notice that we have used a new method for the bu FIFO which clears the fifo and then enques
the given value in the same cycle. An acceptable solution might also call clear() and enq()

directly but in this case, the solution must make some kind of note indicating that there might
be an issue with using both of these methods in the same rule on the same queue. There
are some subtle issues with this part which we are currently working out - we will post an
updated set of solutions in the next few days.

rule compoundBzFetchAdd ( instr matches Add {dst:.rd, src1:.ra,src2:.rb}

&&& it matches EBz {cond:.cv,addr:.av} );

if ( cv == 0 ) then begin

bu.clearThenEnq(tuple2(av, EAdd {dst:rd, op1:rf[ra], op2:rf[rb]}));

pc <= av+1;

end

else if ( !stall ) then begin

bu.deq();

bu.enq(tuple2(pc, EAdd {dst:rd, op1:rf[ra], op2:rf[rb]}));

pc <= pc+1;

end

else begin

bu.deq();

end

endrule
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Problem 5 : Bluespec synthesis (20 total points)

In this problem we will explore the circuit that is generated for the example taken from the lecture
slide L08-20. You may find slide L10-26 helpful. These slides are included at the end of the quiz.

(* descending_urgency = "r1, r2" *)

// Moving packets from input FIFO i1

rule r1;

Tin x = i1.first();

if ( dest(x) == 1 ) o1.enq(x);

else o2.enq(x);

i1.deq();

if (interesting(x)) c <= c + 1;

endrule

// Moving packets from input FIFO i2

rule r2;

Tin x = i2.first();

if ( dest(x) == 1 ) o1.enq(x);

else o2.enq(x);

i2.deq();

if (interesting(x)) c <= c + 1;

endrule

Naming convention: The Data, Ready and Enable wires of the method g of module m are named
m.gData, m.gRdy, and m.gEn, respectively. We may attach rule names to these names for further
clarification if necessary. The boolean equations for the circuits that are generated for rule r1 may
be expressed as follows where can fire r1 gives the conditions under which rule r1 can fire.

Guard Logic

x1 = i1.firstData;

p1 = (dest(x1) == 1);

q1 = interesting(x1);

can_fire_r1 = i1.firstRdy

&& ((p1 && o1.enqRdy) || (!p1 && o2.enqRdy));

Action logic (just for rule 1)

o1.enqEn_r1 = p1; o1.enqData_r1 = x1;

o2.enqEn_r1 = !p1; o2.enqData_r1 = x1;

i1.deqEn_r1 = 1;

cEn_r1 = q1; cWriteData_r1 = (cReadData+1);
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Part 5.A : (4 points)

Write down the equation for can fire r2 (i.e. the conditions under which rule r2 can fire).

Assuming p2 = (dest(i2.firstData) == 1) then

can_fire_r2 = i2.firstRdy

&& ((p2 && o1.enqRdy) || (!p2 && o2.enqRdy))

Part 5.B : (8 points)

Write down the equations for the conditions under which rules r1 and r2 will fire. Do not forget
the effect of urgency annotations.

will_fire_r1 = can_fire_r1

will_fire_r2 = !can_fire_r1 && can_fire_r2

Part 5.C : (8 points)

Write down the logic equations for the following signals obtained by combining the logic for the
two rules. Let MUX((x1, c1), (x2, c2)) represent the MUX that produces x1 when c1 is true
and x2 when c2 is true, assuming c1 and c2 can never be true simultaneously.

o1.enqEn = MUX((o1.enqEn_r1, will_fire_r1),

(o1.enqEn_r2, will_fire_r2))

o1.enqData = MUX((o1.enqData_r1, will_fire_r1),

(o1.enqData_r2, will_fire_r2))

i1.deqEn = will_fire_r1
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Equation Sheet

Equation or Symbol Description

g Gate logical effort

h = Cout/Cin Gate electrical effort

f = gh Gate effort

p Gate parasitic delay

pinv Parasitic delay of minimum-sized inverter

d = f + p Delay in units of τ

τ Delay unit

dabs = dτ Absolute delay in seconds

G =
∏

gi Path logical effort

H = Cout/Cin Path electrical effort

F = GH Path effort

D =
∑

di =
∑

gihi +
∑

pi Path delay

f̂ = gihi = F 1/N Optimal stage effort

D̂ = NF 1/N + P Optimal path delay

ĥi = 1/gi × F 1/N Optimal stage electrical effort

Delay =
∑n

i=0

(

∑j=i
j=0

Rj

)

Ci Penfield-Rubenstein wire-delay model

Rd Resistance of driver

Rw Total resistance of wire

Cw Total capacitance of wire

Delay = Rd × Cw/2 + (Rd + Rw) × (Cw/2 + Cload) Simple lumped π model

Number of inputs

Gate Type 1 2 3 4 5 n

Inverter Logical Effort 1

NAND Logical Effort 4/3 5/3 6/3 7/3 (n + 2)/3

NOR Logical Effort 5/3 7/3 9/3 11/3 (2n + 1)/3

Inverter Parasitic Delay pinv

NAND Parasitic Delay 2pinv 3pinv 4pinv 5pinv npinv

NOR Parasitic Delay 2pinv 3pinv 4pinv 5pinv npinv


