Hardware Implementation of an 802.11a Transmitter

Elizabeth Basha, Steve Gerding, Rose Liu May 9, 2005

Complex Digital Systems (6.884) Final Project

Complex Digital Systems (6.884) Final Project

noise

Design Specifications

802.11a

• Modulation: Orthogonal Frequency Division Multiplexing

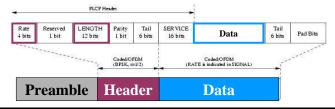
• One symbol consists of 48 data-encoded complex

pairs and 4 pilot complex pairs which protect against

• OFDM symbol - unit of data transmission

• IEEE Standard for wireless communication

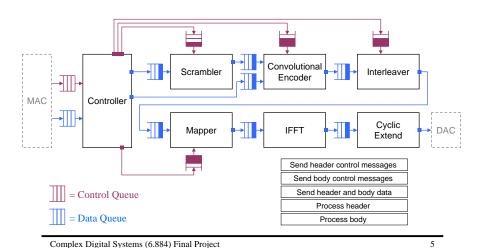
• Frequency of Operation: 5Ghz band


- Transmit at 3 datarates:
 - 6Mb/s 1 24-bit input data frame per OFDM symbol
 - 12Mb/s 2 24-bit input data frames per OFDM symbol
 - 24Mb/s 4 24-bit input data frames per OFDM symbol
- Design Goals:
 - Minimize Area
 - \bullet Minimize Power by reducing frequency and lowering \boldsymbol{V}_{DD}
 - Just-in-time performance to meet the required datarates

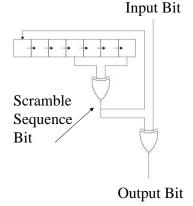
3

Transmitter Overview

- Tasks:
 - Encodes data for forward error correction
 - Maps data into complex pairs & distributes them among the different frequency indices
 - Transform frequency data into time domain
- Packet Format:



Complex Digital Systems (6.884) Final Project


Complex Digital Systems (6.884) Final Project

4

Top Level Model

Basic Serial Scrambler Design

- Processes 1 input bit per cycle
- Simultaneously generates 1 scramble sequence bit and computes 1 output bit
- Repeatedly generates a 127-bit scramble sequence

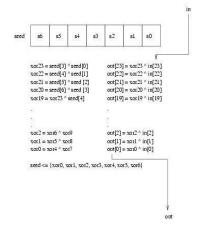
Complex Digital Systems (6.884) Final Project

.

Initial Scrambler Design

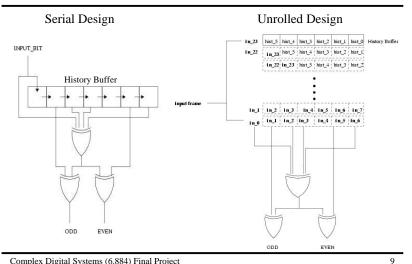
For Each Message:

- Generates the entire 127-bit scramble sequence 127 cycles
- Stores the scrambler sequence to be used throughout the message


Advantage:

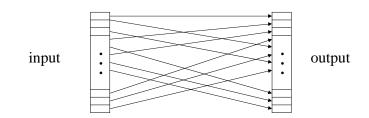
• Processes 1 24-bit input frame per cycle

Disadvantage:


• Large initialization overhead is especially apparent for a series of very short messages

Unrolled Scrambler Design

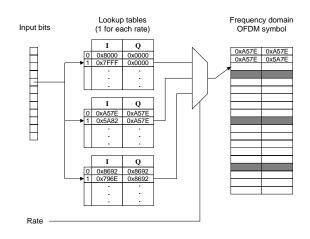
- Simultaneously generates 1 frame of the scrambler sequence and processes 1 frame of input data per cycle
- Updates the state of the seed register at end of each cycle
- •Advantages:
 - 1 cycle initialization
 - Processes 1 24-bit frame per cycle


Convolutional Encoder Design

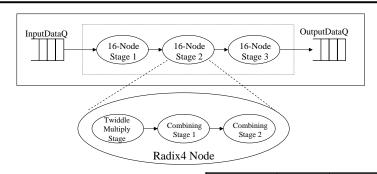
Complex Digital Systems (6.884) Final Project

11

Interleaver Algorithm

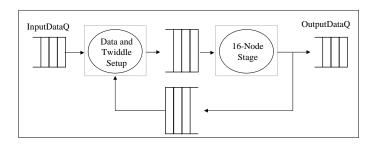


- Reorders input data bits
- Datarate dependent:
 - Interleaving Pattern
 - # of bits interleaved together


Complex Digital Systems (6.884) Final Project

10

Mapper Algorithm


IFFT Initial Design

- Area = 29.12mm²
- Cycle Time = 63.18ns

Radix4 Nodes	*	+
1	16	24
48	768	1152

IFFT Design Exploration 1

- Area = 5.19mm²
- Cycle Time = 30.50ns

Complex Digital Systems (6.884) Final Project

13

15

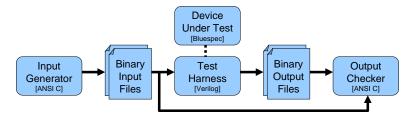
IFFT Design Exploration 2

- Area = 4.57mm^2
- Cycle Time = 32.89ns

Complex Digital Systems (6.884) Final Project

14

Cyclic Extender

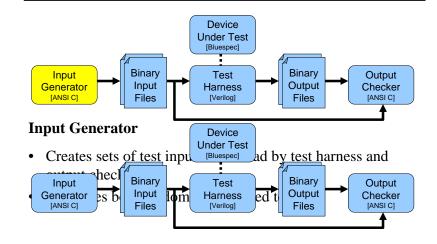

Test Strategy

- Our test structure must enable us to:
 - Debug each module separately
 - Quickly verify new version of modules
 - Verify correctness of entire system
 - Measure throughput of individual modules and system as a whole
- To do this, we leveraged the framework of the Extreme Benchmark Suite (XBS)

XBS Overview

XBS is a benchmark suite designed to measure the performance of highly parallel processors and custom hardware implementations.

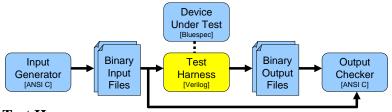
All XBS benchmarks have the following structure:



Complex Digital Systems (6.884) Final Project

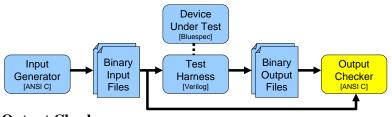
17

19


XBS Overview

Complex Digital Systems (6.884) Final Project

18


XBS Overview

Test Harness

- Encapsulates device under test
- Reads in input files and generates output files
- Measures performance [throughput in bits per cycle] of device under test

XBS Overview

Output Checker

- Reads in input and output files and determines if output files are correct
- Usually contains an ANSI C reference version of DUT
- If output is incorrect, displays location of discrepancy and correct value for debugging purposes

Results

Place and route results:

Total Area	5.27 mm ²		
Critical Path Delay	32.89 ns		

XBS testing results:

Module	Throughput						
	Inpu	t bits per o	cycle	OFDM	symbols p	er cycle	
Scrambler	24	24	24	1	0.5	0.25	
Convolutional Encoder	24	24	24	1	0.5	0.25	
Interleaver	12	12	12	0.5	0.25	0.125	
Mapper	12	16	19.2	0.5	0.333	0.2	
IFFT	6	12	24	0.25	0.25	0.25	
Cyclic Extend	24	48	96	1	1	1	
Transmitter System	6	12	12	0.25	0.25	0.125	

21

Complex Digital Systems (6.884) Final Project

Evaluation

- Our design fully conforms to the IEEE 802.11a standard
- Our design meets timing for the 6, 12, and 24 Mbps transmission rates
 - Total system throughput (24 Mbps) = 12 bits / cycle
 - Clock Frequency = 30.4 MHz
 - Maximum data rate of system = 364.8 Mbps
- We can turn our timing slack into power savings by reducing V_{DD} and clock frequency
 - Clock frequency can be reduced to 2.0 MHz