Hardware Implementation of an 802.11a Transmitter

Elizabeth Basha, Steve Gerding, Rose Liu May 9, 2005

802.11a

- IEEE Standard for wireless communication
- Frequency of Operation: 5Ghz band
- Modulation: Orthogonal Frequency Division Multiplexing
 - OFDM symbol unit of data transmission
 - One symbol consists of 48 data-encoded complex pairs and 4 pilot complex pairs which protect against noise

Transmitter Overview

- Tasks:
 - Encodes data for forward error correction
 - Maps data into complex pairs & distributes them among the different frequency indices
 - Transform frequency data into time domain
- Packet Format:

Design Specifications

- Transmit at 3 datarates:
 - 6Mb/s 1 24-bit input data frame per OFDM symbol
 - 12Mb/s 2 24-bit input data frames per OFDM symbol
 - 24Mb/s 4 24-bit input data frames per OFDM symbol
- Design Goals:
 - Minimize Area
 - \bullet Minimize Power by reducing frequency and lowering V_{DD}
 - Just-in-time performance to meet the required datarates

Top Level Model

Basic Serial Scrambler Design

- Processes 1 input bit per cycle
- Simultaneously generates 1 scramble sequence bit and computes 1 output bit
- Repeatedly generates a 127-bit scramble sequence

Initial Scrambler Design

For Each Message:

- Generates the entire 127-bit scramble sequence 127 cycles
- Stores the scrambler sequence to be used throughout the message

Advantage:

• Processes 1 24-bit input frame per cycle

Disadvantage:

• Large initialization overhead is especially apparent for a series of very short messages

Unrolled Scrambler Design

- Simultaneously generates 1 frame of the scrambler sequence and processes 1 frame of input data per cycle
- Updates the state of the seed register at end of each cycle
- •Advantages:
 - 1 cycle initialization
 - Processes 1 24-bit frame per cycle

Convolutional Encoder Design

Interleaver Algorithm

- Reorders input data bits
- Datarate dependent:
 - Interleaving Pattern
 - # of bits interleaved together

Mapper Algorithm

IFFT Initial Design

- Area = 29.12 mm²
- Cycle Time = 63.18ns

Radix4 Nodes	*	+
1	16	24
48	768	1152

IFFT Design Exploration 1

- Area = 5.19 mm²
- Cycle Time = 30.50ns

IFFT Design Exploration 2

- Area = 4.57 mm²
- Cycle Time = 32.89ns

Cyclic Extender

Test Strategy

- Our test structure must enable us to:
 - Debug each module separately
 - Quickly verify new version of modules
 - Verify correctness of entire system
 - Measure throughput of individual modules and system as a whole
- To do this, we leveraged the framework of the Extreme Benchmark Suite (XBS)

XBS is a benchmark suite designed to measure the performance of highly parallel processors and custom hardware implementations.

All XBS benchmarks have the following structure:

Test Harness

- Encapsulates device under test
- Reads in input files and generates output files
- Measures performance [throughput in bits per cycle] of device under test

Output Checker

- Reads in input and output files and determines if output files are correct
- Usually contains an ANSI C reference version of DUT
- If output is incorrect, displays location of discrepancy and correct value for debugging purposes

Results

Place and route results:

Total Area	5.27 mm^2
Critical Path Delay	32.89 ns

XBS testing results:

Module	Throughput						
	Input bits per cycle			OFDM symbols per cycle			
Scrambler	24	24	24	1	0.5	0.25	
Convolutional Encoder	24	24	24	1	0.5	0.25	
Interleaver	12	12	12	0.5	0.25	0.125	
Mapper	12	16	19.2	0.5	0.333	0.2	
IFFT	6	12	24	0.25	0.25	0.25	
Cyclic Extend	24	48	96	1	1	1	
Transmitter System	6	12	12	0.25	0.25	0.125	

Evaluation

- Our design fully conforms to the IEEE 802.11a standard
- Our design meets timing for the 6, 12, and 24 Mbps transmission rates
 - Total system throughput (24 Mbps) = 12 bits / cycle
 - Clock Frequency = 30.4 MHz
 - Maximum data rate of system = 364.8 Mbps
- We can turn our timing slack into power savings by reducing V_{DD} and clock frequency
 - Clock frequency can be reduced to 2.0 MHz