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1 Introduction

In this work, we discuss the design and implementation of an 802.11a Transmitter. 802.11a [1] is an IEEE standard for
wireless communication that operates in the 5GHz band, using Orthogonal Frequency Division Multiplexing (OFDM).
OFDM is an efficient multi-carrier modulation technique where the baseband signal is the composite of multiple data-
encoded sub-carriers. A top level diagram of the Transmitter is shown in Figure 1.
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Figure 1: Top Level Diagram of an 802.11a Transmitter.

1.1 Specifications

Our implementation supports the mandatory data rates of 6, 12 and 24 Mbits/s. The modulation parameters corre-
sponding to these data rates are shown in Figure 2.

Data rate Modulation Coding Rate Coded bits/sub-carrier Coded bits/OFDM Symbol Data bits/OFDM symbol
(Mbits/s) (R) ( �������
	 ) ( ��	����
� ) ( ��������� )

6 BPSK 1/2 1 48 24
12 QPSK 1/2 2 96 48
24 16-QAM 1/2 4 192 96

Figure 2: Modulation Parameters Corresponding to Data Rates.

Since we implement only the Transmitter side of the 802.11a specification, we support the following subset of
services/messages to the Medium Access Control (MAC) layer.
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� PHY_TXSTART.req(LENGTH,DATARATE,SERVICE,TXPWR_LEVEL): MAC transmit request
& parameters

� PHY_TXSTART.conf: confirmation of transmit request

� PHY_DATA.req(DATA): MAC request to send data

� PHY_DATA.conf: confirmation that data was received from MAC

1.2 Design Exploration Overview

We have three main design goals: minimize area, minimize power, and achieve just-in-time performance to meet the
6, 12, and 24Mb/s data rates. After ensuring the functional correctness of our system, we explore techniques such
as reducing frequency and

�����
. In addition, we minimize the area of our design by reusing and sharing logic units,

which also reduces leakage power in our system.
In Section 2 we touch upon some specific design choices at the module level. The techniques we explore are

summarized below.

� Vary input data frame size

� Use lookup tables to eliminate the need for multipliers

� Unroll serial algorithms to improve performance

� Determine whether an unrolled IFFT algorithm or reuse of one stage of the design will provide the best power,
area, and performance trade-off.

1.3 Implementation Strategy

We implement our design using Bluespec, a high-level hardware description language. Bluespec supports explicit and
implicit synchronization primitives, allowing us to describe all actions and transactions atomically. We compile our
design into Verilog using the Bluespec compiler. We also use Synopsys VCS for simulation, Design Compiler for
synthesis, and Encounter for place and route.

1.4 Test Strategy

Because the 802.11a Transmitter can be decomposed into separate, well defined blocks, we implement and verify these
blocks independently. To facilitate the testing of our modules, we use the framework of the Extreme Benchmark Suite
(XBS), shown in Figure 3. For each module, an XBS input generator is constructed to generate test input patterns
to stress the module. The test patterns are a combination of random input data and directed tests designed to test
corner cases of the design. An XBS output checker is constructed for each module. Once a module is implemented in
Bluespec, it is outfitted with the XBS Bluespec test harness and subjected to the aforementioned tests.
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Figure 3: Test Strategy using XBS.
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Once we implement and test the individual modules, we verify the entire system by combining our modules and
testing them using XBS, as described above.

2 System Overview

Transmission is initiated by the MAC through a PHY TXSTART.request, which passes the LENGTH, DATARATE,
SERVICE, and TXPWR LEVEL parameters to the Controller module. The LENGTH parameter, ranging from 1 to
4095, defines the number of data octets in the packet. The DATARATE parameter describes the bit rate at which
the packet is transmitted. The received SERVICE field from the MAC always consists of 16 zero bits. The TX-
PWR LEVEL parameter ranges from 1 to 8, and indicates which power level should be used for transmission.

Once the Controller has received the PHY TXSTART request, it generates and transmits the preamble and header
sections of the PPDU frame format (format of message). The PPDU transmission format consists of a preamble,
header, and data as shown in Figure 4.

PLCP Preamble
12 OFDM Symbols One OFDM Symbol

SIGNAL
Variable Number of OFDM Symbols

DATA

Rate
4 bits

Reserved
1 bit

LENGTH
12 bits

Parity
1 bit

Tail
6 bits 16 bits

SERVICE
PSDU

Tail
6 bits Pad Bits

PLCP Header

(BPSK, r=1/2)
Coded/OFDM

(RATE is indicated in SIGNAL)
Coded/OFDM

Figure 4: Format of Message: PPDU Frame Format.

2.1 Preamble Generation

The preamble is used by the receiver for timing synchronization purposes. It consists of 10 repetitions of a short
training sequence, and 2 repetitions of a long training sequence. The short training sequence is composed of 12
sub-carriers modulated by the elements of the fixed sequence S, given by

S =
� ���

� *
�
0, 0, 1+j, 0, 0, 0, -1-j, 0, 0, 0, 1+j, 0 ,0 ,0, -1-j, 0, 0, 0, -1-j, 0, 0, 0, 1+j, 0, 0, 0, 0, 0, 0, 0, -1-j, 0, 0, 0,

-1-j, 0, 0, 0, 1+j, 0, 0, 0, 1+j, 0, 0, 0, 1+j, 0, 0, 0, 1+j, 0, 0 �
The long training sequence is composed of 53 sub-carriers which are modulated by the fixed sequence L, given by
L =

�
1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1,

-1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1 �
Since the Preamble is fixed, it can be pre-computed and stored in the Controller to be transmitted whenever a new

transmit request arrives.

2.2 Header Generation

As shown in Figure 4, the main components of the header are the RATE and LENGTH fields, which are given in the
transmit request from the MAC. The reserved and tail bits are always 0. The header is always encoded with BPSK
using a coding rate R = 1/2 at 6 Mbits/s. Once encoded, the header is sent through the rest of the units (Puncturer,
Interleaver, Mapper, IFFT, and Cyclic Extend) with the appropriate control signal to specify the 6Mbits/s data rate.
Note that the header is not scrambled.

After forming the header and sending it to the Encoder, the Controller calculates and sets the rate dependent
modulation parameters (listed in Figure 2) for data transmission. Modules which are data rate dependent will receive
a control message from the Controller to be configured accordingly.

3



The Controller then forms the data section of the PPDU frame format by appending the main message data to the
SERVICE field and adding trailing 0s. The resulting packet is then sent to the Scrambler.

2.3 Scrambler

A simple implementation of the Scrambler consists of 7 shift registers and 2 XORs as shown in Figure 5. The
Scrambler is of length-127, meaning it repeatedly generates a 127-bit sequence for a given pseudo-random initial
state. Each incoming data bit is XORed with the current bit in the 127-bit sequence.

The first 7 bits to be sent into the Scrambler are the beginning of the SERVICE parameter. These 7 bits are
re-written with the initial state of the Scrambler so descrambling can be done in the receiver.

INPUT_BIT

SCRAMBLED_BIT

Figure 5: Simple Implementation of Scrambler.

After reaching the end of the message data, the Scrambler replaces the trailing scrambled zero bits with non-
scrambled zero bits to reset the Convolutional Encoder for the next message.

2.4 Convolutional Encoder and Puncturer

As shown in Figure 6, a simple version of a Convolutional Encoder consists of 7 shift registers and 3 XORs. Each
input bit into the Encoder produces 2 output bits (even and odd). The even bit should be read by the Puncturer before
the odd bit.

The Puncturer is not needed for the data rates we are implementing. Therefore we decided to omit the Puncturer
in our design.

2.5 Interleaver

The Interleaver operates at an OFDM symbol level with a block size of � 	����
� (48, 96, or 192) bits. Within each
block, the bits are reordered in two steps. In the first step, adjacent coded bits are reordered to map to nonadjacent
sub-carriers. In the second step, adjacent coded bits are mapped alternately into less and more significant bits of the
sub-carrier constellation.

Let k denote the index of the coded bit before interleaving, i denote the index after the first step, and j denote the
index after the second step. The value s = max( � �����
	 /2,1).������� 	����
�� ���
	 ����
�������� ������� ������� �"!��#� �%$ �&�('")*)+) � ,�-/.1032 �

45� 0 	6��� �������87� �
� �9� � � ,�-/.1032 ��� �������:��� 	 7� 	����
� �;� 
���� 0 $ �<�('")*)+) � ,�-/.1032 �
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Figure 6: Simple Implementation of Convolutional Encoder.

Since these indices can be calculated beforehand, the Interleaver basically reorders the input bits in a set pattern
based on the data rate.

2.6 Mapper

The Mapper also operates at the OFDM symbol level with a block size of � 	 �
� 	 (48, 96, or 192) bits. Each block is
divided into sub-blocks at the OFDM sub-carrier level. Sub-blocks are of size � �����
	 (1, 2, or 4) bits. The Mapper
(stage-1) first converts each sub-block into a complex number representing BPSK, QPSK, or 16-QAM constellation
points. Note that the modulation type may be different for the header and data parts of the message. The resulting 48
complex pairs are then normalized by ����� � . The I, Q, and ����� � values for each modulation type are shown in
Figures 7 to 10.

Modulation ���	� �
BPSK 1
QPSK

�

 �

16-QAM
�

 �
�

Figure 7: ����� � Table.

in 0 I-out Q-out
0 -1 0
1 1 0

Figure 8: BPSK encoding for I and Q values.

After converting each of the sub-blocks into complex pairs, the Mapper (stage-2) then collects the 48 complex
number outputs (one OFDM symbol) and maps each complex number to one of 48 sub-carriers represented as fre-
quency offset indices. Pilots (also complex pairs) are inserted in the four other sub-carriers to ensure robustness against
frequency offsets and phase noise. The 52 total sub-carriers per OFDM symbol are indexed -26 to 26, with the 0 sub-
carrier omitted and filled with a zero. These 52 complex pairs are then padded to create 64 complex pairs. The final
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in 0 I-out in 1 Q-out
0 -1 0 -1
1 1 1 1

Figure 9: QPSK encoding for I and Q values.

(in 0,in 1) I-out (in 2, in 3) Q-out
00 -3 00 -3
01 -1 01 -1
11 1 11 1
10 3 10 3

Figure 10: 16-QAM encoding for I and Q values.

output of the Mapper consists of 64 complex pairs each ordered to a frequency offset index in the OFDM symbol.

2.7 IFFT and Cyclic Extension

The Inverse Fast Fourier Transform (IFFT) module converts the complex frequency values into complex time values
for transmission. There is no specification on the size or representation of the data nor the algorithm required.

After the data transformation, cyclic extension is performed to form a guard interval.

2.8 Data Rates

The relative data input-output bit ratios for each module are shown in Figure 11. BITWIDTH IQ is the bit width
we use to represent the I and Q values of the complex numbers. For the Interleaver and Mapper, the ratios change
depending on the data rate.

Bits In Bits Out
Scrambler 1 1
Conv Encoder 1 2
Puncturer 2 2
Interleaver 48, 96, or 192 48, 96, or 192
Mapper(stage-1) 48, 96, or 192 48*(2*BITWIDTH IQ)
Mapper(stage-2) 48*(2*BITWIDTH IQ) 64*(2*BITWIDTH IQ)
IFFT 64*(2*BITWIDTH IQ) 64*(2*BITWIDTH IQ)
Cyclic Extend 64*(2*BITWIDTH IQ) 81*(2*BITWIDTH IQ)

Figure 11: Input-output bitwidths of each module.

3 UTL Model of Transmitter

In the following subsections, we give a general Unit- Transaction Level (UTL) description of each module. Figure 12
is a top level UTL model of the Transmitter.

3.1 System Assumptions

In order to focus on more detailed design exploration issues, we made the following system level assumptions to
simplify the overall Transmitter design.
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Figure 12: Top Level UTL Model of Transmitter.
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� Preamble: Since the preamble is static for every message, we assume another module after the Transmitter will
prepend the preamble.

� Data Padding: We assume all data padding and tail bits are added in the MAC layer.

3.2 Controller

input: � ControllerCtrlQ:
�
Ctrl type, rate, header length, message length, data length �

� ControllerDataQ:
�
FRAMESIZE �

output: � ScramblerCtrlQ
�
data length � ,

� ScramblerDataQ:
�
FRAMESIZE � ,

� FormattingModuleCtrlQ
�
message length, data length � ,

� EncoderDataQ fromController:
�
FRAMESIZE � ,

� EncoderCtrlQ:
�
header length, data length � ,

� InterleaverCtrlQ:
�
rate, length � ,

� MapperCtrlQ:
�
rate, length, reset � ,

architectural state: rate, header length, message length, data length, txpwr level, frames left to read

Transactions:

1. TransmitHeader(header length, data length, rate)

(if ControllerCtrlQ.first.Ctrl_type == transmit)
and (frames_left_to_read == 0))

a. Set frames_left_to_read
b. TransmitHeader(rate, header length)

- Form header packet: Hdr
- EncoderCtrlQ.enq(header_length, data_length);
- EncoderDataQ_fromController.enq(Hdr)
- InterleaverCtrlQ.enqueue(6Mbits/s, header length)
- MapperCtrlQ.enqueue(6Mbits/s, header length, reset=1)

c. Initialize Scrambler:
- Generate random 7 bit sequence
- ScramblerCtrlQ.enqueue(7-bit seq, length)

d. Initialize Formatting Module
- FormattingModuleCtrlQ.enq(message length, data length)

2. TransmitData(data length, rate, data)

(if ControllerDataQ not empty and (frames_left_to_read > 0))

a. Set rate for data transmission if have not yet done so
- InterleaverCtrlQ.enqueue(Rate, data length)
- MapperCtrlQ.enqueue(Rate, data length, reset=0)

b. ScramblerDataQ.enq(data)

Scheduler: Priority in descending order: TransmitData, TransmitHeader
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3.3 Scrambler

input: � ScramblerCtrlQ:

–
�
7 seed bits �

–
�
data length �

� ScramblerDataQ:
�
Data �

output: EncoderDataQ fromScrambler:
�
Scrambled Data �

architectural state: 7, 1-bit registers, octets to scramble

Transactions:

1. Initialize(7-bit seed, data length)

(if ScramblerCtrlQ not empty & octets_to_scramble == 0)
// Only re-initialize when scrambling of all data using
// old sequence is complete

a. (seed, data length) = ScramblerCtrlQ.pop()
b. InitializeRegisters(seed)
c. octets_to_scramble = data length

2. Scramble()

(if (ScramblerDataQ is not empty) and (octets_to_scramble > 0))
// octets_to_scramble records how many more octets to scramble
// using a particular initialization sequence.

a. data_in = ScramblerDataQ.pop();
b. Scramble data_in
c. FormattingModuleDataQ.enq(ScrambledData)
d. Decrement octets_to_scramble

Scheduler: Priority in descending order: Initialize, Scramble

3.4 Formatting Module

input: � FormattingModuleCtrlQ:
�
msg length, data length �

� FormattingModuleDataQ:
�
data �

output: EncoderDataQ fromScrambler:
�
data (even, odd) pairs �

architectural state: msg octets remaining, data octets remaining

Transactions:

1. init()

(if FormattingModuleCtrlQ not empty and (msg_octets_remaining == 0))

a. (msg_length, data_length) = FormattingModuleCtrlQ.pop()
b. msg_octets_remaining = msg_length
b. data_octets_remaining = data_length + 2 (service length)
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2. format()

(if FormattingModuleDataQ not empty and (msg_octets_remaining > 0))

a. data_in = FormattingModuleDataQ.pop()
b. If data_octets_remaining == 0, 1 or 2:
data_in <= substitute 0s in for the 6 tail bits at correct byte.
c. EncoderDataQ.enq(data_in)
d. Decrement msg_octets_remaining and data_octets_remaining

Scheduler: Priority in descending order: init, format

3.5 Convolutional Encoder

input: � EncoderCtrlQ:
�
hdr length, data length �

� EncoderDataQ fromController:
�
data �

� EncoderDataQ fromScrambler:
�
data �

output: InterleaverDataQ:
�
data (even, odd) pairs �

architectural state: 7 1-bit registers, hdr octets remaining, data octets remaining

Transactions:

1. init()

(if EncoderCtrlQ not empty and (hdr_octets_remaining == 0)
and (data_octets_remaining == 0))

a. (hdr_length, data_length) = EncoderCtrlQ.pop()
b. hdr_octets_remaining = hdr_length
b. data_octets_remaining = data_length

2. Encode Data from Controller()

(if EncoderDataQ_fromController not empty and (hdr_octets_remaining > 0))

a. data_in = EncoderDataQ_fromController.pop()
b. For each bit in data_in, compute output pairs.
c. InterleaverDataQ.enq(data (even,odd) pairs)
d. Decrement hdr_octets_remaining

3. Encode Data from Scrambler()

(if (EncoderDataQ_fromScrambler not empty) and
(hdr_octets_remaining == 0) and (data_octets_remaining > 0))

a. data_in = EncoderDataQ_fromController.pop()
b. For each bit in data_in, compute output pairs.
c. InterleaverDataQ.enq(data (even,odd) pairs)
d. Decrement data_octets_remaining

Scheduler: Priority in descending order: init, Encode Data from Controller, Encode Data from Scrambler
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3.6 Interleaver

input: � InterleaverDataQ:
�
48 bits � . Depending on data rate, total data for symbol may span multiple 48-bit

frames.
� InterleaverCtrlQ:rate,length

output: MapperDataQ:
�
48 bits � . Since output may span multiple 48-bit frames, may take multiple cycles to write

out output.

architectural state: datarate, datarate frames remaining, symbol frames remaining

Transactions:

1. init(dataRate, length)

(if InterleaverCtrlQ not empty and datarate_frames_remaining == 0)

a. {rate,length} = InterleaverCtrlQ.deq()
b. datarate = rate
c. datarate_frames_remaining = length/octetsPerFrame
d. symbol_frames_remaining = octetsPerSymbol(datarate)/octetsPerFrame

2. Interleave(data)

(if InterleaverDataQ is not empty,
and using the currently set datarate (datarate_frames_remaining > 0))

a. Interleave data
b. If symbol is complete (symbol_frames_remaining == 0):

then: MapperDataQ.enq(InterleavedData), reset symbol_frames_remaining
Else: decrement symbol_frames_remaining

c. Decrement datarate_frames_remaining

Scheduler: Priority in descending order: init, Interleave

3.7 Mapper

input: � MapperDataQ:
�
48 bits � . Depending on data rate may take multiple cycles to read in total data for symbol

� MapperCtrlQ:rate,length, reset

output: IFFTDataQ:
�
64 complex pairs � (each I/Q is 16 bits)

architectural state: pilot polarity vector index, datarate, data rate frames remaining, symbol frames remaining

Transaction:

1. init(dataRate, length)

(if MapperCtrlQ not empty and datarate_frames_remaining == 0)

a. {rate,length,reset} = MapperCtrlQ.deq()
- If (reset == 1) reset pilot polarity vector index.

b. datarate = rate
c. datarate_frames_remaining = length/octetsPerFrame
d. symbol_frames_remaining = octetsPerSymbol(datarate)/octetsPerFrame
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2. Map(data)

(if MapperDataQ is not empty, and datarate_frames_remaining > 0)

a. Map data:
- compute complex pairs for the coded bits of each sub-carrier
- map complex pairs to sub-carrier indices

If completed mapping entire symbol (symbol_frames_remaining == 0):
- reset symbol_frames_remaining
- add pilots using pilot polarity vector, and index
- increment pilot polarity vector index
- pad to 64 complex pairs
- IFFTDataQ.enq(MappedData)

Else: decrement symbol_frames_remaining

b. Decrement datarate_frames_remaining

Scheduler: Priority in descending order: init, Map

3.8 IFFT

input: IFFTDataQ:
�
64 complex pairs � represents 1 symbol in frequency domain

output: CyclicExtendDataQ:
�
64 complex pairs � in time domain

architectural state: none

Transactions:

1. IFFT(Data)

(if IFFTDataQ is not empty)

a. Perform IFFT on Data
b. CyclicExtendDataQ.enq(IFFTDataOut)

Scheduler: Priority in descending order: IFFT

3.9 Cyclic Extend

input: CyclicExtendDataQ:
�
64 complex pairs �

output: toAnalogQ:
�
64 complex pairs �

architectural state: none

Transactions:

1. CyclicExtend(Data)

(if CyclicExtendDataQ is not empty)

a. Perform CyclicExtension on Data
b. toAnalogQ.enq(CyclicExtendedData)

Scheduler: Priority in descending order: CyclicExtend
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4 Testing

XBS is used to test individual modules and the system as a whole.

4.1 Individual Module Tests

Testing of each individual module requires the following components:
� XBS input generator

� XBS output checker

� XBS reference implementation used by output checker

� Verilog test harness that calls the Bluespec implementation

For individual module testing we rely on random input data as well as directed data to test corner cases. The
following provides a general overview of the corner cases that are tested for some main modules.

Controller: � Test for correct control messages when transmitting successive messages with different rates

Scrambler: � Asymmetric 7-bit initial sequence
� Scramble multiple messages sequentially with varying initial sequences and lengths

Convolutional Encoder: � Encode multiple messages with varying lengths

Interleaver & Mapper: � Interleave and Map successive messages with different data rates and lengths

IFFT: � Radix 4 Module: Pattern combinations of maximum and minimum numbers, and positive and negative
numbers to double-check proper sign determination and overflow capabilities

� 64-point IFFT: Worst case positive/negative and minimum/maximum first and second stage input patterns

4.2 System Level Testing

System testing requires the following components:
� System level XBS input generator

� System level XBS output checker

� XBS reference implementation used by output checker

� Test harness for entire system

At the system level, we test that the transmitted packets contain all components of the message in the right order.
We also make sure that data from different messages does not get mixed together, when we process parts of different
messages in parallel. In addition, we ensure that the Transmitter meets the data rates of 6, 12, and 24 Mbits/s, as well
as corner cases such as sending messages with the maximum and minimum lengths.

5 Initial Microarchitectural Design and Implementation

5.1 Design

The Transmitter consists of 1 top level wrapper module and 8 individual modules, as seen in the UTL diagram in
Figure 12. What is different from the UTL diagram is that each module contains its own set of input and output
queues. The top level module has Bluespec rules that pop data from the output queues of each module and push data
into the input queues of the next module. This design does create a dead cycle in some cases, but this is not an issue
because we meet the specified data rates. We decided to use this queue layout for easy integration with XBS and
individual module testing.

In this section, we describe the microarchitectural design of each of the modules.
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5.2 Controller

Input: Ctrl{Ctrl_type, rate, header length, message length, data length}
Data - Framesize is 24 bits

Output: ScramblerCtrl{seed, data length},
FormattingModuleCtrl{message length, data length},

EncoderCtrl{header_length, data_length},
InterleaverCtrl{rate, length},
MapperCtrl{rate, length, reset}
ScramblerData{data:FRAMESIZE},
EncoderData{hdr:FRAMESIZE}

The Controller is divided into three stages. In the first stage, it reads in the input request and starts sending out
control messages to the individual modules. For modules that require two control messages per message (Interleaver
and Mapper), the control signal sends another control message out in the second stage. In the third stage, the Controller
reads in the data and passes it to the relevant module. The Controller cannot process a new request until it has finished
processing the current request through all three stages. This makes keeping track of the state for each message simpler.

Scrambler Seed Generator The Scrambler seed generator is implemented within the Controller. At the beginning
of each message, it provides a 7 bit initialization value for the Scrambler. For initial system level testing, we currently
hard code 1 7-bit value to be output by the Seed Generator.

5.3 Scrambler

Input: Ctrl{7-bit seed, 13-bit length}
Data - Framesize is 24 bits

Output: Scrambled Data - Framesize is 24 bits

Instead of scrambling each input bit one at a time, as shown in Figure 5, the Scrambler is designed so that it
can process 24 bits in one pass. At the beginning of each message, the Scrambler first generates the entire 127-bit
scramble sequence based on the seed. Each bit of the 127-bit sequence is generated one at a time, in the manner shown
in Figure 5. Therefore the initialization stage takes 127 cycles. This overhead is acceptable because most messages
will be greater than 127 bits. Thereafter the savings of being able to scramble 24 bits in one pass for the length of the
message will more than make up for the initialization overhead. After the initialization stage, data is read in 24 bits per
cycle and is XORed with the corresponding bits of the 127-bit sequence. The 127-bit sequence is stored in a circular
shift register. After each cycle, the circular shift register is shifted left by 24 bits.

5.4 Formatting Module

Input: Ctrl{13-bit total msg length, 12-bit data length
(not including 2 service octets)}
Scrambled Data in 24 bit frames

Output: Scrambled Data - Framesize is 24 bits with the 6 tail bits replaced
with zeros.

The Formatting Module replaces the scrambled 6 tail bits (shown in Figure 4) with unscrambled zeros. To accom-
plish this, the Formatting Module performs 2 tasks. One task is to pass the data received from the Scrambler to the
Convolutional Encoder. Another task is identify the 6 tail bits in the data stream and replace these 6 bits with zeros.

At the beginning of each message the Formatting Module stores the message and data lengths (in octets) into two
registers. The message length is the length of the entire message (not including preamble or header). The message
length tells the Formatting Module how many octets it needs to pass from the Scrambler to the Convolutional Encoder
for a particular message (task one). The data length is the length of the service and data portions of the message.
The data length is used to identify the location of the 6 tail bits (task two). The Formatting Module decrements these
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registers each time it reads a frame of data from the Scrambler and passes it to the Convolutional Encoder. When
the data length register reaches zero, the Formatting Module replaces the next 6 bits (the tail bits) obtained from the
Scrambler with zeros.

Since the data length (in octets) may not be evenly divisible by the frame size (24 bits), the Formatting Module
also checks to see when the data length register reaches 1 and 2. Depending on the case, the Formatting Module will
replace the correct 6 bits in the current frame with zeros.

5.5 Convolutional Encoder

Input: Ctrl{hdr_length, data_length}
Data from Scrambler and Controller - Framesize is 24 bits

Output: Encoded Data from Scrambler (data) and Controller (header) -
Framesize is 24 bits.

The Convolutional Encoder is split into two stages, as shown in Figure 13. In the first stage, the Encoder orders
the data coming in from its two input queues. The Encoder must encode the header data coming from the Controller
before encoding the data from the Scrambler. In the second stage, the Encoder encodes the ordered data.

Instead of only encoding one bit per cycle, as show in Figure 6, we designed the Convolutional Encoder to encode
one frame of data every cycle, by unrolling the simple Encoder algorithm. Figure 14 shows the unrolled Encoder
design. Every cycle, the Encoder first sets up the history bit vectors based on the inputs and the values in the history
buffer. One history bit vector is required per input bit. The history buffer acts as the bit vector for the first input bit.
The Encoder XOR’s the data with the corresponding values in the history bit vectors to produce the outputs. The
Encoder also updates the history buffer each cycle so that the history bit vectors can be computed in the next cycle.

Control

Hdr − from Controller

Data
Schedule

Schedule 
Hdr

Init

orderedDataQ

orderedResetQ

Data from
Formatting Module

Encode

OutputQ

Convolutional Encoder

Figure 13: Microarchitecture Design of Convolutional Encoder.

5.6 Interleaver

Input: Ctrl{rate,length}
Data - Framesize is 48 bits

Output: Interleaved Data - Framesize is 48 bits

The Interleaver rearranges the bits of the input data in some fixed pattern based on the rate. It is split into two
stages, as shown in Figure 15. In the first stage, the Interleaver reads in each frame of data, rearranges them, and
writes each bit into the corresponding index of a 192 bit buffer. Depending on the rate, the Interleaver either needs to
operate on blocks of 1, 2, or 4 frames of data in this first stage, which changes the latency of the Interleaver. After
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Figure 14: Unrolled Convolutional Encoder Design.

the required entries in the 192 bit buffer have been filled, the second stage of the Interleaver reads the data out of the
buffer one frame at a time, and pushes them to the output queue. Currently the two stages cannot be overlapped.

5.7 Mapper

Input: Ctrl{rate,length,reset}
Data - Framesize is 48 bits

Output: Frequency Domain OFDM Symbol - 64 complex pairs

Calculation of the complex pairs requires a multiplication of the � ��� � and the mapped complex pair value. In
order to eliminate the need for multipliers in the Mapper, we decided to pre-compute and store all 16 possible products,
eliminating the need for 2 multipliers per parallel complex pair multiplication. In our design, we aimed to compute as
many as 48 complex pairs in parallel (for the 6MB/s rate) and, therefore, by storing the products, not only did we save
in area, but we also decreased the critical path in the Mapper.

At the beginning of each message, the pilot polarity vector index needs to be reset, which is indicated by the reset
bit.

As shown in Figure 16, the Mapper is split into two stages similar to the Interleaver. The first stage may iterate
multiple times (depending on the data rate) before all the complex pairs have been mapped and pilots inserted. A 64
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Figure 15: Microarchitectural Design of Interleaver.

complex pair register file is used to temporarily store the computed complex pairs until mapping is complete. Then, in
the second stage, the complex pairs are read out of the register file to the output queue.

5.8 IFFT

Input: Data - 64 complex pairs
Output: OFDM Symbol - 64 complex pairs

For initial design purposes, the IFFT is completely unrolled. It accepts 64 complex pairs of data, which it then
sends through three stages of data. Each stage consists of 16 radix-4 nodes (see Figure 17). The radix-4 node contains
all of the computational complexity and has three stages: a twiddle multiplication and two combinational stages (see
Figure 18). Each node requires 16 multiplication units and 24 adds. Because signed multiplication is not supported,
significant logic is required to convert signed values and support a fixed-point number representation. After completing
the IFFT calculation, a reorder stage aligns the data correctly before writing it to the output queue.

Due to anomalies in Bluespec during implementation, the format of the data changes within the IFFT block. While
the Mapper passes a vector of complex pairs, the IFFT implementation converts this to a structure for the calculation
and then reconverts to a vector for the Cyclic Extender.

5.9 Cyclic Extender

Input: Data - 64 complex pairs
Output: Guarded OFDM Symbol - 81 complex pairs

Cyclic Extension involves prepending the data with the last 16 complex pairs of itself. The first complex pair of
the data is appended at the end. This is shown in Figure 19.
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Figure 16: Microarchitectural Design of Mapper.

5.10 Design Analysis

After running some initial system tests, we decided that the 127-cycle initialization of the Scrambler, at the beginning
of each message, needed to be redesigned. For a series of medium to long messages, the 127 cycle overhead has little
effect on the data rate. However, for the exceptional case of a series of minimum length messages, the 127 cycle
initialization stage severely impacts the data rate. Although we think that a series of minimum length packets will not
occur very often, we still want our Transmitter design to meet the data rate for all possible inputs.

5.11 Synthesis Results

After pushing our design through synthesis using the Synopsys Design Compiler, we obtained the following estimation
of our design’s area:

Module Area ( � 
 �
)

Input Queues 7,428
Controller 29,621
Scrambler 25,970
Formatting Module 12,403
Convolutional Encoder 38,017
Interleaver 51,270
Mapper 404,401
IFFT 29,023,736
Cyclic Extend 598,689
Output Queue 410,469
Miscellaneous Logic 409

Total 30,602,413
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Figure 17: Microarchitectural Design of IFFT.

The critical path delay in our design was determined to be 64.36 nanoseconds through the IFFT unit. This means
that our design would be able to run at 15.54 MHz. Our initial synthesis results clearly indicate that the IFFT, which
accounts for 94.8% of our total area and sets the critical path of our circuit, must be a main focus of design exploration.

6 First-Pass Design Exploration

6.1 Design Modifications

In the first pass of our design exploration, we decreased the initialization stage of the Scrambler from 127 cycles to 1
cycle. This optimization was made at the cost of generality, but since the 802.11a specification did not define the range
of supported Scrambler seeds, we decided that this loss of seed generality would not limit the Transmitter design.

Initially, we designed the system so that it could operate on a large range of 7 bit Scrambler seeds. But in order to
support the use of this large range of seeds, we needed the Scrambler to compute, in real time, the 127 bit initialization
sequence. This computation took 127 cycles.

In our revised design of the Scrambler, we decided to support 16 fixed seeds. We pre-computed the 127 bit
sequences for each of these seeds and stored them in a lookup table within the Scrambler. Now the seed generator
pseudo-randomly provides an index (from 0 to 15) which the Scrambler uses to select the corresponding 127 bit
sequence. The use of the lookup table reduces the Scrambler initialization stage to 1 cycle.

The Scrambler seed generator uses the input length field to generate an index into the Scrambler lookup table, as
shown below.

scrambler_sequence_index = {length[4], length[2], length[10], length[0]}

Since the length generally changes from message to message, the Scrambler will be initialized differently each
time.
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Figure 18: Radix 4 Module.
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Figure 19: Cyclic Extension.

6.2 Output Analysis

In this section we analyze the throughput of the Transmitter, at different data rates, to identify the main bottleneck of
the system. For the bottleneck modules, we propose some design modifications to achieve full throughput.

System-Level Analysis Using the lowest data rate of 6Mb/s and starting from an empty pipeline, it takes 24 cycles
to get out 1 header and 1 data OFDM symbol. Subsequent data symbols come out once every other cycle, as seen in
Figure 20. Therefore we expect the highest throughput we can achieve with the current design is 0.5. The simulation
output confirms this analysis: one long message sent at 6Mb/s, gives an output rate of 0.49.

Figure 20: Waveform Output of 1 long message sent at 6Mb/s.

Using the 12 Mb/s data rate, the output rate is decreased by a factor of 2. Using the highest data rate of 24Mb/s,
the output rate is decreased by a factor of 4, resulting in a throughput of 0.12.

Unit-Level Analysis Further unit-level analysis identified the bottlenecks to be the Interleaver and Mapper. The
throughput of each module, measured in terms of output frames per cycle, is shown in Figure 21.

20



Module 6Mb/s 12Mb/s 24Mb/s
Scrambler 0.99 0.99 0.99
Formatter 0.99 0.99 0.99

Conv. Encoder 0.99 0.99 0.99
Interleaver 0.49 0.49 0.49

Mapper 0.49 0.33 0.199
IFFT 0.99 0.99 0.99

Cyclic Extender 0.99 0.99 0.99

Figure 21: Unit-Level throughput (output frames/cycle) of key modules at different data rates.

Multiple Messages When a series of short messages are sent, the startup overhead before the header of each message
is 2 cycles. The time between the header and the data portion of the message varies depending on the data rate.

FIFO Queue Sizing We experimented with larger queue sizes in between each module, but observed no improve-
ment in throughput. Therefore the bottleneck is not in the queues but in the Interleaver.

6.2.1 Design Modifications for Bottleneck Modules

In order to achieve full throughput, of 1 output frame per cycle, for the Interleaver and Mapper, the rules for different
stages in the modules need to fire simultaneously. Basically, these modules need to become fully pipelined.

As described in Section 5.6, the Interleaver does not overlap computation with the outputting of data. Because
it takes multiple cycles to output all the data for the 12Mb/s and 24Mb/s rates, overlapping of the computation and
output stages can be tricky. Data that has not yet been output must not be overwritten. As shown in Figure 15 the
interleaving and output rules share the 192 bit buffer. Mutual exclusion of the stages was necessary to synchronize the
the rules over this shared resource. In order to overlap the interleaving and output stages, we need to add an additional
192 bit buffer. This way, while one stage is reading/writing one buffer, the other stage can be reading/writing the other
buffer. By alternating between the buffers, full throughput can be achieved.

As seen in Figure 21, the Mapper’s throughput decreases as data rate is increased. This is expected because as the
data rate increases, the ratio of input frames to one output frame increases. At 6Mb/s, one input frame results in one
output frame. At 12Mb/s, 2 input frames are needed to create one output frame. At 24Mb/s, 4 input frames are needed
per output frame. Based on this analysis, the ideal throughputs are 1, 0.5, and 0.25 for the 6Mb/s, 12Mb/s and 24Mb/s
data rates respectively. The reason why the Mapper’s throughput is lower than that of the ideal is because the Bluespec
rules for computation and outputting are mutually exclusive. Therefore, when the Mapper is outputting data (1 cycle),
it is not computing. This added cycle for outputting data decreased the Mapper’s throughput from the ideal.

In order to improve the Mapper’s throughput, the rule for outputting data and the rule for computation need to be
able to fire simultaneously. Therefore pipelining is the solution. Pipelining the Mapper would not be difficult. It just
requires some extra registers to keep the state of each pipeline stage.

If we include the proposed modifications for the Interleaver and Mapper into our system, we will be able to achieve
the system throughput for each data rate, as shown in Figure 22.

Module 6Mb/s 12Mb/s 24Mb/s
Transmitter 0.99 0.49 0.24

Figure 22: Projected system throughput (output frames/cycle) after proposed modifications.

At the full system throughput, our Transmitter will be able to process one 24 bit input frame per cycle. Therefore,
when transmitting at 6Mb/s, 12Mb/s, and 24Mb/s, the minimum clock frequencies required are 250 KHz (4 us clock
period), 500 KHz (2 us clock period), and 1MHz (1 us clock period) respectively. Therefore, we can reduce our clock
frequency from 15.54 MHz to 1MHz and lower

� ���
accordingly to achieve a lower power Transmitter design.
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6.2.2 Current Design Point Analysis

Without incorporating the optimizations to the bottleneck modules, our Transmitter is able to process one 24 bit input
frame every 2 cycles. Therefore the minimum clock frequencies required are 500 KHz, 1 MHz, and 2MHz for the 6,
12, and 24 Mb/s data rates respectively. Since our current clock frequency of 15.54 MHz is larger than the minimum
clock frequency required, we clearly meet our target data rates. Therefore with the unmodified design, we can reduce
our clock frequency from 15.54 MHz to 2MHz and lower

� � �
to reduce power.

6.2.3 Design Decisions

Our two main design goals are minimizing area and power. We feel that the current Transmitter size of 30mm
�

is
much too large. Since the fully unrolled IFFT dominates the Transmitter area, our first priority is to minimize the area
of the IFFT. We decided to hold off on implementing the proposed changes because we believe that the IFFT will
become the main performance bottleneck of the system when we reduce its area. When the IFFT becomes the main
bottleneck, any optimizations to the other modules will not benefit performance.

6.3 Synthesis Results

Since the IFFT dominates the area and clock period in the Transmitter, the addition of a lookup table in the Scrambler
did not change the synthesis results much.

7 Second-Pass Design Exploration

7.1 Design Modifications

The initial results for the IFFT clearly demonstrate that a significant design change is required. The area for the IFFT
is 29.1mm

�
, 94.8% of the entire system, and the clock cycle is dominated by the IFFT due to the lack of pipelining. In

order to reduce both area and the critical path, we fold the calculation to reduce the number of computational stages
from three down to one, consisting of 16 nodes (see Figure 23).

Twiddle
Data

Setup

16−Node
Stage

InputDataQ OutputDataQ

Figure 23: Microarchitectural State of IFFT Folded to 1 Stage.

Additional logic prior to the stage reorders the data and computes the twiddle factors. We expect the new IFFT
design to reduce the system area by a factor of three, although the additional logic will increase the area by some
amount. The cycle time and the throughput of the system should also decrease, since the single stage will be time
multiplexed (over multiple cycles) to perform the entire calculation.

7.2 Performance Analysis

The optimized IFFT takes 7 cycles in steady state to compute one output (3 to setup the data and twiddles, 3 to compute
the different IFFT stages, and 1 to output the data). Therefore the highest throughput attainable by the IFFT alone is
0.143.
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Figure 24 shows the throughput of the system at each data rate. For the 6Mb/s and 12Mb/s data rates, the IFFT is
the bottleneck with one output packet produced every 7 cycles. For the 24Mb/s data rate, one output is produced every
8 cycles because the Interleaver processes one packet every 2 cycles, requiring 8 cycles to produce the needed 4 input
packets to calculate one output at 24Mb/s. Therefore, the minimum clock frequency required to meet the 6Mb/s and
12Mb/s data rates is 1.75 MHz, and the minimum frequency required to meet the 24Mb/s data rate is 2MHz. Place and
route results show that our system runs at a frequency of 33.33 MHz. Therefore our Transmitter clearly meets all the
required data rates. For a lower power design, we could reduce the system clock frequency to 2MHz and lower

� � �
.

Module 6Mb/s 12Mb/s 24Mb/s
Transmitter 0.142 0.142 0.123

Figure 24: System Throughput (output frames/cycle) after Design Exploration 2.

We debated whether we should implement the modifications for the Interleaver and Mapper proposed in Sec-
tion 6.2.1. Implementing these changes would enable us to decrease the minimum required clock frequency from
2MHz to 1.75MHz, and we can get further power savings. However, implementing these changes will increase the
area of the Transmitter. Increased area results in increased capacitance, which would reduce the amount of power sav-
ings obtained by decreasing the frequency to 1.75MHz. Further analysis using power-delay curves is needed before
we can decide if any changes to our system are worthwhile.

7.3 Synthesis Results

Implementing this change decreases the area of the IFFT by 49% and decreases the cycle time by 15% as can be seen
in the table. The size of one calculation stage increases due to the separation of the fixed twiddle numbers from the
computation, reducing the optimizations possible.
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Module Area ( � 
 �
)

AN2D2 25
AO21D1 10
BUFFD12 144
BUFFD16 244
CKND2 721
CKND16 2,658
CKNXD0 23
CKNXD16 246
FIFO2 00000800 0 400,586
FIFO2 00000800 1 264,230
FIFO2 00001004 0 511,243
FIFO2 00001004 1 285,250
INVD0 12,516
INVD1 1,089
INVD2 10,194
INVD16 28
MUX2D1 556
MUX2D2 168
MUX2ND0 23,716
ND3D2 11
NR2D2 8
OR4D1 11
XOR2D1 13
module ifft data setup 53,661
module ifft stage 12,594,934
module ifft twiddle setup 2,549

Total 14,164,846

Cycle Time 9.88 ns

7.4 Tool Flow Modifications

To reduce area even further, we next decided to exploit the tool capabilities. We modified our scripts to run at high
area effort, changing:

compile -map effort medium -area effort none -boundary optimization
to:
compile -map effort medium -area effort high -boundary optimization
This surprisingly resulted in significant area reduction of 47% as well as a slight cycle time reduction, shown in

the following table.
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Module Area ( � 
 �
)

AN2D1 20
AO21D0 8
BUFFD0 96
CKND0 3
CKND16 98
CKNXD0 44
FIFO2 00000800 0 327,867
FIFO2 00000800 1 175,364
FIFO2 00001004 0 360,445
FIFO2 00001004 1 200,296
INVD0 11,888
INVD1 6,154
INVD2 5
INVD8 122
MUX2D1 3,761
MUX2ND0 21,042
ND3D1 6
NR2D1 5
OR4D1 11
XOR2D1 13
module ifft data setup 30,923
module ifft stage 5,473,274
module ifft twiddle setup 351

Total 6,611,707

Cycle Time 9.52 ns

7.5 Place and Route

After place and route, the current area of the Transmitter is 6.34mm
�
, and the cycle time is 30.5ns.

8 Final Modifications

Resizing FIFO Queue We noticed that further area savings can be obtained if we decrease the sizes of the input and
output queues for the Mapper, IFFT, and Cyclic Extender. Although each queue only had 2 elements, the data width is
very large resulting in a large area per element. We decided to resize the output FIFO of the Mapper, input and output
FIFOs of the IFFT, input and output FIFOs of the Cyclic Extender, and the output FIFO of the top level Transmitter
module to 1 element. This did not reduce the throughput of the system, so our minimum clock frequency remains at 2
MHz.

Optimized IFFT In performing the design exploration of the IFFT, two rules controlled the two different steps
required, one to setup the data and the other to calculate the IFFT stage. This resulted in 6 stages to perform the
calculation as well as extra queues for passing data between the rules. The hope was that by separating these stages
the design could be pipelined, but that would require additional hardware. Given that the design exceeds the data rate
necessary, this unnecessarily increases the area. These two rules were then combined (see Figure 25), resulting in the
removal of one queue and a latency decrease to 4 cycles. The synthesis results are shown in the table below.
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Module Area ( � 
 �
)

AN2D1 7
BUFFD0 1339
CKND2D0 10
CKND2D1 10
CKND16 49
CKNXD0 57
FIFO2 00000800 0 184,716
FIFO2 00000800 1 74,303
FIFO2 00000802 181,622
INVD0 61
INVD1 68
MUX2D1 27552
MUX2ND0 214
ND2D1 31
ND2D2 8
ND3D1 7
NR2D0 5
module ifft data setup 44,233
module ifft stage 3,967,284
module ifft twiddle setup 1388

Total 4,482,965

Cycle Time 27.15 ns
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16−Node
Stage

InputDataQ OutputDataQ

Figure 25: Microarchitectural State of IFFT with Setup and Calculation Combined.

8.1 Performance Evaluation

Before final modifications, the IFFT was the bottleneck for the 6Mb/s and 12 Mb/s data rates. After optimizations, the
IFFT decreased its latency from 7 cycles to 4 cycles. Therefore the system throughput increased for these two data
rates, as shown in Figure 26. The Interleaver and Mapper remain the bottleneck for the 24Mb/s data rate. Therefore,
the throughput at that data rate, as well as the minimum clock frequency of the system, did not change.

Module 6Mb/s 12Mb/s 24Mb/s
Transmitter 0.248 0.248 0.123

Figure 26: System Throughput (output frames/cycle) after Final Modifications.

8.2 Place And Route

Our final Transmitter design is 5.27mm
�
, with a cycle time of 32.9ns. This results in a clock freq of 30.4MHz. The

physical layout of the different modules on our chip is shown in Figure 27.
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Figure 27: Physical module layout. The black in each diagram represents the area occupied by that module.
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8.3 Future Work

Scrambler The Scrambler can be further optimized to support any 7-bit seed and decrease area, while maintaining
1 cycle initialization. This can be achieved by unrolling the Scrambler initialization algorithm, as shown in Figure 28.
During the 1 cycle initialization stage, the Scrambler stores the seed in a register. During each compute stage, the
Scrambler XORs the corresponding bits of the seed to generate the next 24 bits of the Scrambler sequence. These 24
bits are then XORed with the corresponding input bits to produce the output. At the end of each compute stage, the
Scrambler sets up the state of the seed register for the next cycle of computation.

seed s6 s5 s4 s3 s2 s1 s0

xor23 = seed[3] ^ seed[0]
xor22 = seed[4] ^ seed[1]
xor21 = seed[5] ^ seed [2]
xor20 = seed[6] ^ seed [3]
xor19 = xor23 ^ seed[4]

.

.

.
xor2 = xor6 ^ xor9
xor1 = xor5 ^ xor8
xor0 = xor4 ^ xor7

seed <= {xor0, xor1, xor2, xor3, xor4, xor5, xor6}

out[23] = xor23 ^ in[23]
out[22] = xor22 ^ in[22]
out[21] = xor21 ^ in[21]
out[20] = xor20 ^ in[20]
out[19] = xor19 ^ in[19]

.

.

.
out[2] = xor2 ^ in[2]
out[1] = xor1 ^ in[1]
out[0] = xor0 ^ in[0]

in

out

Figure 28: Optimized Scrambler.

Input and Output FIFO Queue Placement We place the input and output queues within each module in order
to decouple and simplify the interface between the modules. This also enables the modules to be easily integrated
into the XBS test structure for unit testing. A consequence of this design, however, is that data is double buffered,
which increases area. Therefore to achieve an even lower area, we can eliminate the output queues within each module
allowing data to be buffered only once, in the input queues of each module. For modules with wide FIFOs, such as
the Mapper, IFFT, and Cyclic Extend, this would result in significant area savings. However, this new design would
change the simple interfaces of each module. The Bluespec methods for each module would need explicit predicate
conditions, whereas in the old design, the Bluespec methods relied on implicit FIFO full/empty predicates.

IFFT We could achieve addtional area savings by folding the IFFT calculation even further. Instead of just folding
the stages, we could fold the nodes within each stage, reducing the calculation to one radix4 node. This would increase
the latency of the IFFT to 49 cycles in steady state, but we have enough excess throughput within the system to account
for the extra delay.
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9 Conclusion

Our implementation of the 802.11a Physical Layer successfully meets the required data rates of 6Mb/s, 12Mb/s and
24Mb/s. Although our initial area was large, through design exploration we reduced it by 83% to 5.27mm

�
. Our final

design runs at 30.4MHz, which exceeds the 2MHz frequency required to meet the data rates. This allows us to reduce� � �
and operate at a much slower frequency to reduce power.
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