
OutOut--ofof--Order Order
Superscalar CPUSuperscalar CPU

May 6th, 2005
Cliff Frey and Vicky Liu

6.884 Final Project PresentationMay 6th, 2005

6.884 Final Project PresentationMay 6th, 2005

The Basis of Our Design

- Allows out-of-order execution

- Instructions wait in Reservation Stations

- Execute instructions once operands have been computed

- Can reorder WAW and WAR

Tomasulo’s Algorithm

6.884 Final Project PresentationMay 6th, 2005

The Basis of Our Design

- In Decode stage, each instruction result is assigned a Tag

- Each register maps to a Value or to a Tag

- When a result is computed, result and tag are broadcast

- All instances of the Tag are updated with the computed value

- Updates RegFile and Reservation Stations

Tomasulo’s Algorithm

6.884 Final Project PresentationMay 6th, 2005

High Level Design

Fetch Unit
Decode
Renaming Register File

The major components

Reservation Stations
Functional Units
Common Data Bus

6.884 Final Project PresentationMay 6th, 2005

High Level Design

Fetch Decode Execute Write Back
(CDB)

6.884 Final Project PresentationMay 6th, 2005

BlueSpec Rule & Module Design

6.884 Final Project PresentationMay 6th, 2005

- Unresolved branches stall decode stage

- Memory operations need to be in order

- Back to back dependent adds take 2 cycles

High Level Design Issues

6.884 Final Project PresentationMay 6th, 2005

Design Exploration:
Supporting Precise Exceptions

- Register File contents can be lost

- external changes need to ordered

Short-comings of Tomasulo’s algorithm

6.884 Final Project PresentationMay 6th, 2005

Design Exploration:
Supporting Precise Exceptions

… instructions before the excepting instruction,
execute normally

… instructions after and including the excepting
instruction do not change any programmer visible state
of the processor

A Processor Supports Precise Exceptions If…

6.884 Final Project PresentationMay 6th, 2005

Design Exploration:
Supporting Precise Exceptions

… instructions before the excepting instruction,
execute normally

… instructions after and including the excepting
instruction do not change any programmer visible state
of the processor

A Processor Supports Precise Exceptions If…

- Register File contents can be lost

- external changes need to ordered

Short-comings of Tomasulo’s algorithm

6.884 Final Project PresentationMay 6th, 2005

Original High Level Design

6.884 Final Project PresentationMay 6th, 2005

Updated High Level Design

Our Solution
- Minimal changes to original design
- Reorder Buffer (ROB) and Commit stage
- Architectural Register File
- External changes made at commit time

6.884 Final Project PresentationMay 6th, 2005

Updated High Level Design

6.884 Final Project PresentationMay 6th, 2005

Handling Exceptions

ROB

Undo

Set PC to interrupt vector (0x1100)
Exception PC stored in coprocessor register EPC
Correct speculative results in Rename Register File
Clear cached information in Functional Units

6.884 Final Project PresentationMay 6th, 2005

Other Features to Get High Performance

- Speculative fetch

- external changes need to ordered

- memory unit can handle many requests at a time

Implemented Features

Unimplemented Features
- Branch prediction and target buffering

- Speculative execution

6.884 Final Project PresentationMay 6th, 2005

A Closer Look at the Load/Store Unit

result.get()

Mem

6.884 Final Project PresentationMay 6th, 2005

BlueSpec Stories: Conflicting Rules

BlueSpec Stories: The Fix

Possible Solutions
- One rule for every possible data path

6.884 Final Project PresentationMay 6th, 2005

- Use config regs everywhere
- Be slow and blame BlueSpec =P

BlueSpec Stories: The Fix

Possible Solutions

Our Solutions
- Homemade completion buffer

- Make methods write to RWires

- Write “magic” rule to handle all combination of cases

6.884 Final Project PresentationMay 6th, 2005

- One rule for every possible data path
- Use config regs everywhere
- Be slow and blame BlueSpec =P

Bypassing from writeback to decode

6.884 Final Project PresentationMay 6th, 2005

6.884 Final Project PresentationMay 6th, 2005

An Excerpt from our Trace Output

Back to back, nondependent adds

Fetch Decode Execute Writeback Commit
F | [] - - |
F |00001000=0 ADD [] - - |
F |00001004=1 ADD [0] - - |
F |00001008=2 ADD [1] A-0 -00000001 |

|0000100c=3 ADD [2] A-1 -00000001 | 0
| [3] A-2 -00000002 | 1
| [] A-3 -00000002 | 2
| [] - - | 3

6.884 Final Project PresentationMay 6th, 2005

An Excerpt from our Trace Output

Decode add mem BR WB commit
001398 LW r1, r10 [|M |] |
00139c ADDI r2, r2, -4 [|M LW |] |
0013a0 SLT r1, r11, r1 [ADDI |M |] |
0013a4 BEQZ r1, 0x13d8 [|M |]ADDI |
0013a8 SUBI r3, r12, -1 [|M LW|] |

[SUBI |M |]LW |
[SLT |M |]SUBI |LW
[|M |]SLT |ADDI
[|M |BEQZ] |SLT
[|M |]BEQZ |
[|M |] |BEQZ *taken!
[|M |] |SUBI

Instruction stream with reordering

6.884 Final Project PresentationMay 6th, 2005

Synthesis Results

Clock speed = 4ns

Area = .38 mm2

6.884 Final Project PresentationMay 6th, 2005

Design Choices and Performance

Configurable Parameters
Resizing reservation stations

Number of slots in ROB and the Fetch Unit buffer

Different functional unit setup

Easily support multicycle functional units

6.884 Final Project PresentationMay 6th, 2005

Design Choices and Performance

Resizing reservation stations

Number of slots in ROB and the Fetch Unit buffer

Different functional unit setup

Easily support multicycle functional units

Configurable Parameters

Branches and stores really hurt performance

Achieved IPC ≈ .5 on vector-add and quicksort

Performance

