

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

The Basis of Our Design

Tomasulo's Algorithm

- Allows out-of-order execution
- Instructions wait in Reservation Stations
- Execute instructions once operands have been computed
- Can reorder WAW and WAR

The Basis of Our Design

Tomasulo's Algorithm

- In Decode stage, each instruction result is assigned a Tag
- Each register maps to a Value or to a Tag
- When a result is computed, result and tag are broadcast
- All instances of the Tag are updated with the computed value
- Updates RegFile and Reservation Stations

The major components

Fetch Unit Decode Renaming Register File Reservation Stations Functional Units Common Data Bus

High Level Design Issues

- Unresolved branches stall decode stage

- Memory operations need to be in order

- Back to back dependent adds take 2 cycles

Design Exploration: Supporting Precise Exceptions

Short-comings of Tomasulo's algorithm

- Register File contents can be lost
- external changes need to ordered

Design Exploration: Supporting Precise Exceptions

A Processor Supports Precise Exceptions If ...

... instructions before the excepting instruction, execute normally

... instructions after and including the excepting instruction do not change any programmer visible state of the processor

Design Exploration: Supporting Precise Exceptions

A Processor Supports Precise Exceptions If ...

... instructions before the excepting instruction, execute normally

... instructions after and including the excepting instruction do not change any programmer visible state of the processor

Short-comings of Tomasulo's algorithm

- Register File contents can be lost
- external changes need to ordered

- Our Solution
- Minimal changes to original design
- Reorder Buffer (ROB) and Commit stage
- Architectural Register File
- External changes made at commit time

Set PC to interrupt vector (0x1100) Exception PC stored in coprocessor register EPC Correct speculative results in Rename Register File Clear cached information in Functional Units

Other Features to Get High Performance

Implemented Features

- Speculative fetch
- external changes need to ordered
- memory unit can handle many requests at a time

Unimplemented Features

- Branch prediction and target buffering
- Speculative execution

BlueSpec Stories: The Fix

Possible Solutions

- One rule for every possible data path
- Use config regs everywhere
- Be slow and blame BlueSpec =P

BlueSpec Stories: The Fix

Possible Solutions

- One rule for every possible data path
- Use config regs everywhere
- Be slow and blame BlueSpec =P

Our Solutions

- Homemade completion buffer
- Make methods write to RWires
- Write "magic" rule to handle all combination of cases

An Excerpt from our Trace Output

Fetch	Decode	$\mathbf{Ex}\mathbf{\epsilon}$	ecute	e Writeback	Commit
F		[]		
F	00001000=0	ADD []		
F	00001004=1	ADD [0]		
F	00001008=2	ADD [1]	A-0 -0000001	
	0000100c=3	ADD [2]	A-1 -0000001	0
		[3]	A-2 -0000002	1
		[]	A-3 -0000002	2
		[]		3

Back to back, nondependent adds

An Excerpt from our Trace Output

	add	mem	BR WB	commit	2
r1, r10	[M]		
DI r2, r2,	-4 [M LW]		
' r1, r11	, r1 [ADDI	M]]		
Z r1, 0x1	3d8 [M] ADD	I	
I r3, r12	, -1 [M LW]]		
	[SUBI	M] LW		
	[SLT	M] SUB	I LW	
	[M]SLT	ADDI	
	[M	BEQZ]	SLT	
	[M]BEQ	Z	
	[M]]	BEQZ	*taken!
	[M]]	SUBI	
	r1, r10 pI r2, r2, r1, r11 pZ r1, 0x1 sI r3, r12	add r1, r10 [r2, r2, -4 [r1, r11, r1 [ADDI Z r1, 0x13d8 [I r3, r12, -1 [[SUBI [SLT [[[[add mem r1, r10 [M p1 r2, r2, -4 [M LW p1 r1, r11, r1 [ADDI] M p2 r1, 0x13d8 [M p3 r3, r12, -1 [M p3 r3, r12, -1 [M [SUBI M [[[M [[[M [[[M [[[M [[[M [add mem BR WB r1, r10 [M] p1 r2, r2, -4 [M] p2 r1, r11, r1 [ADDI M] p2 r1, 0x13d8 [M] p2 r3, r12, -1 [M LW [SUBI M]]LW [SLT M]SUB [M]SUB [M]SUB [M]BEQ [M] [M]	addmemBRWBcommitr1, r10 $[$ M $]$ $]$ $]$ p1r2, r2, -4 $[$ M LW $]$ $]$ r1, r11, r1[ADDI M $]$ $]$ p2r1, 0x13d8 $[$ M $]$ $]$ p3r3, r12, -1 $[$ M M $]$ SUBI M $]$ $]$ LW $[$ M M $]$ $]$ $[$ M M $]$ $SUBI$ $[$ M M $]$ SLT $[$ M M $]$ SLT $[$ M M $]$ $BEQZ$ $[$ M $]$ $]$ $BEQZ$ $[$ M $]$ $]$ $SUBI$

Instruction stream with reordering

Design Choices and Performance

Configurable Parameters

Resizing reservation stations

- Number of slots in ROB and the Fetch Unit buffer
- Different functional unit setup
- Easily support multicycle functional units

Design Choices and Performance

Configurable Parameters

Resizing reservation stations

Number of slots in ROB and the Fetch Unit buffer

Different functional unit setup

Easily support multicycle functional units

Performance

Branches and stores really hurt performance Achieved IPC \approx .5 on vector-add and quicksort