Superscalar SMIPS Processor

Group 2
Qian (Vicky) Liu Cliff Frey

1 Introduction

Our project is the implementation of a superscalar procdbsd implements the SMIPS specification. Our
primary goal is to achieve high performance on a single thegaxecution. Relatively large area or power
consumption is acceptable.

Our major architectural features are an out-of-order et@cwnit based off of Tomasulo’s algorithm,
and an in order commit mechanism that supports precise gansepWe also support speculative fetch and
a memory system that returns results out of order.

The out-of-order execution unit enables the processor tii@lonaximum amount of computation pos-
sible given what results have currently been computed. iffjisoves IPS when memory latency is high or
variable. The tradeoff is that each instruction may takeenoycles to execute, and complex control logic is
necessary to move the result of a computation to where itddexk

A major shortcoming of Tomasulo’s algorithm is that it does support precise exceptions. However,
computer architectures that do not this feature are unpoice it is quite difficult, or maybe even im-
possible, for programmers to debug in the event of an exaepithe commit mechanism adds support for
precise exceptions by allowing the processor to roll ba@ngkes to the processor state caused by instruc-
tions that should not have been executed due to excepti@ingaevents or an interrupt signal.

2 Design

2.1 UTL Design

At the most basic level, our design is only really broken up itwo isolated modules: the fetch unit and

the execute unit. These units can be isolated with one bafferessages in between them. It is possible
to further isolate different parts of the execution unitt this seems less valuable. The different parts of
the execution core are fairly highly connected, and soméefiriteractions between the modules will be
buffered, while other interactions will not be. A possible&kdown of modules is shown in Figure 1.

CPU

Instruction Port % % Data Port

Memory

Figure 1: UTL Design. Abstractly, our design is broken umititese modules that send messages to each
other. The commit unit is not in our first implementation.

o | Add
Fetch Operands/ Unit
Issue
E E - »| Mem
Unit {ITT— DMem
(TTT =
IMem Reservation Stations Functional Unitg

Reg File

With Rename Info

Figure 2. Design of execute stages. Our implementation ofaBulo’s algorithm. The CDB is shown in
purple

: Reg/Rename File CDB/Writeback Rule

Res Stations Results ._,|:|

Rule Writes State
Fetch Branch Unit

Rule Reads State
CPU iﬁ; Func Unit

Legend

Decode/
Operands

Figure 3: Bluespec design. Our BlueSpec module design farparscalar processor using Tomasulo’s
algorithm. The diagram shows the various modules in ouesygtectangles), their hierarchy, and the rules
(black rounded rectangles) that act upon the modules.

2.2 Modular Design

The execution unit is based off of Tomasulo’s algorithm. Timplementation depends on various data
structures maintained in hardware. Figure 2 shows the nmairponents and paths between the modules.

The main register file contains actual register values, gs tarresponding to results that are currently
being computed.

The Operands/Issue unit takes instructions, reads thewogeout of the main register file, and issues
the instructions to an appropriate reservation statiois Uihit also does a write to the main register file that
marks the destination register as a result that is currdeilyg computed.

There are also reservation stations. Each decoded iristidstplaced in a reservation station waiting
for a specific type of execution unit. These stations holddperands (or tags corresponding to pending
operands). These operands listen to the common data bus)(@iBupdate themselves when the results
have been computed.

Each cycle, each functional unit can take an instruction lfas all of its operands ready and begin
executing it. Once the result of the instruction is readig #tored in a result register for that functional unit.

Each cycle, all of the result registers from the functionaitsiare inspected and, if available, a result is
chosen to be broadcast on the CDB. This broadcast updatesciiens that depend on that result that are
waiting in various reservation stations. It also updatesrtiain register file with the result if the tag in the
reg file matches the tag of this result.

3 Bluespec Design

The Bluespec design structure somewhat matches our mathgdagn in that the Fetch Unit survived. Most
other units have recursive dependencies, and were thetafoken up into different state elements and rules
that governed them. The decode, writeback, and branchtralegyether the entire CPU module. The Fetch

Unit takes care of updating the PC, making branch predistiand queuing up fetched instructions. Each

Functional Unit is responsible for maintaining its own mes¢ion stations and driving the execution of ready

instructions. Finally the Register File is its own unit tkeltes care of renaming registers in addition to reads
from and writes to registers. Refer to Figure 3 for a diagrdrthe relationship between the rules and the

units.

3.1 Fetch Unit

The Fetch Unit contains a completion buffer that servesagtruction queue, the program counter, and a
reference to instruction memory. The unit has two rules tkemaquests and get responses from instruction
memory. The Fetch Unit interface allows the decode rule tndthe next fetched instruction from the
completion buffer, and it allows the branch rule to set the R when a branch is taken. Upon changing
the PC, the unit must clear the buffer and discard the carreipg memory requests.

3.2 Functional Units

In our design, the different Functional Units make up a igted Execution Unit, with all of the units
sharing a common interface. Each unit contains its own sReservation Stations, subunits for performing
its respective operation, and a result register. Curremityhave implementations of adder, logic, shifter,
branch, coprocessor, and load/store units.

Each unit is responsible for having a set of rules that algteakcute instructions. For simple functional
units, this is just one rule that finds a ready instructionhe teservation stations, calculates the result,
and stores it in the result register. A “ready instructiog”an instruction where all of the operands have
values rather than tags that refer to results of other iotms. Each unit differs in how it implements the
execution of an instruction. For example, the load/stoiiewii require multiple rules (for making requests
and receiving results), while the branch unit will calcaléte branch target address and whether the branch
should be taken or not.

The Functional Unit interface exposes the Reservationddtato the CPU level rules. This interface
allows the decode rule to queue decoded instructions igstétions and for the writeback rule to update
the stations with the latest result. The interface alsamaltihe writeback rule to access the results computed
and to update all the reservation stations.

The branch unit is special because its results are not basada the CDB. Instead, a special branch
rule in the CPU looks at the branch unit’s results, and detersif the branch should be taken or not. This
unit was heavily modified once we added in support for preei@eptions.

3.3 Register File

The initial register file unit is very simple because we doswgiport precise exceptions. Each register either
holds a value or the tag of an instruction that will produce thlue. The Register File interface allows the

decode rule to read out operand values and the writebackauipdate the registers with the latest result.
In addition, the decode rule needs to tell the Register wiatctrrent instruction’s tag and what register
the instruction writes to. There are no rules in this unitsiall the changes will be driven by calls to the
Register File methods.

3.4 Decode Rule

The decode rule is responsible for getting an instructiomfthe Fetch Unit and deciding which functional
unit to issue the instruction to. This rule determines theetgf the instruction and reads the value of the
operands from the Register File. It also does a write to thm megister file that updates the destination
register to be a tag for the result of this instruction. Initadd, the decode rule checks the result that is
currently being written back because the updated value tigygipavailable from the register file. Each
instruction is also issued a tag that is a combination of &ggster the instruction writes to and a unique
number. This tag is given to the register file for renamingopses. In the end, the decoded instruction is
gqueued into the appropriate Functional Unit's reservasiation.

The decode rule is only allowed to fire if there is not branchriogress as our design does not support
speculative execution.

3.5 Writeback/CDB Rule

The writeback rule broadcasts one result out of the availalbles in the various functional units. The
priority order in which we broadcast results is loads/stpother multistage computations (i.e., multipliers,
dividers), and then single stage computations. The wrilelale will update all the reservation stations
and the register file with the result and the tag of the inswadhat produced it. This rule also updates an
RWire that is checked by the decode rule.

3.6 Branch Rule

The branch rule monitors the branch unit. In the case thaamcdhrrule is executed, this rule will update the
PC via the Fetch Unit if the branch is taken. This model wasighd once we implemented a commit stage.

4 Design Explorations

4.1 Supporting Precise Exceptions

One of the major drawbacks of Tomasulo’s algorithm is itdilig to support precise exceptions. A pro-
cessor that supports precise exceptions must allow atbictgdns before the exception causing instruction
to execute normally, but it cannot allow any instructionttb@ames after to make processor state changes
that are visible to the programmer. In Tomasulo’s desigmesinstructions are executed and written back

Fetch Operands/ <
Issue —_— -
A ROB
v \
E E Reservation Stations Func Units
IMem
Reg Rename File Arch Reg File

Figure 4: Updated hardware design. Our updated hardwargndesich now supports precise exceptions.
The CDB is shown in purple.

out of order, there is no easy way to determine which inssastcame before or after the exception causing
instruction and no mechanism for nullifying the latter mstions. Furthermore, there is no way to roll back
changes to the register file that are caused by instructimisbme afterwards because the register renaming
scheme we currently use does not remember previous valiesegfster. Finally, our system cannot revert
external changes, such as stores and and writes to copsocegssters, that might have executed before the
exceptional instruction was identified.

We wanted to support precise exceptions by extending ogmatidesign rather than overhauling our
original implementation. With this in mind, we decided todad fifth stage, the commit stage, to our
machine. The commit stage graduates instructions in ordesing a reorder buffer (ROB), and this feature
allows the processor to determine which instructions cdftee an exception causing instruction.

As instructions are graduated from the reorder buffer,rthesults are written to a new architectural
register file. The architectural register file also contaih$1 registers, however the values in this register
file are always consistent with an in order execution of ttarirctions. Our original register file is not
changed in any way; it is still updated by the out-of-ordeitevback stage. By adding the architectural
register file, we have a way of recovering our rename redii¢eafter an exception happens.

The final change to our system involved making external chaiogcur at commit rather than at execu-
tion time. For example, rather than changing the PC righthaghleranch is resolved in the Branch functional
unit, we cache the new PC and when the branch instructiomesdbe commit stage, we retrieve the cached
information and tell the fetch unit the new PC to fetch from.

Refer to Figure 4 for the high level hardware design of our peacessor. We translated this design
quite faithfully into BlueSpec. We added two new moduleg, ROB and the architecture regfile, and we
added two rules that power the commit stage. One of the ridlesCommit rule, handles normal commits,
and the other rule, the Undo rule, disposes of instructibasdome after an exception occurs. Only one of

Reg/Rename File CDB/Writeback
m RoB Rule
Decode/ j

ro] | en s
Operands
Comp Buf
j ® -

Fetch ‘ Res Station% ‘ Results ‘ Rule Writes State
Arch Reg File .—D
Rule Reads State
. Legend
Func Uni
CPU unc Unit

Figure 5: Updated BlueSpec design. Our updated BlueSpes and module design which now supports
precise exceptions. Note that not all rule dependenciesciteally shown in this figure. For instance,
the Writeback rule modifies the reservation stations. Atke, Commit and Undo rules can modify the
functional units in the case of taken branches or executed ststructions.

the two rules will ever be allowed to fire. Figure 5 shows owlatpd BlueSpec rule and module design.

4.2 Bluespec Design

This section goes into more detail about implementatiomefrtew modules we added and the changes we
made to the existing rules and modules. Figure 6 is a detdibggtam of how the rules and the modules
interact, as well as how data flows in our processor.

421 ROB

The ROB is simply a completion buffer where each entry hat@dsRC, the register to write to, the result
value of the instruction, and an error code. The main purpbske error code is to flag instructions that
cause exceptions, but in our current system, it is slightysad in that it is also by the commit rules to
determine if this instruction was a branch, store, or copssor write.

The ROB'’s interface is identical to the completion buffeieifiace: reserve a token, complete an entry,
and drain out an entry. In addition, there is a method, geReservedToken, that returns the value of the
last reserved token.

4.2.2 Architectural Register File

The Architectural Register File is implemented as a regideof 31 registers. There is one read port and
one write port. Each entry is a 32 bit value.

mkGPU

receiveResult()

mkROEUnit

mkRenameRegFile
resaperl Writeback
Rege(32]

readPordi(}

updateWriteReg)

mkFeatchUnit

{|

gethextinst) weribeResuli()

interrupt()

Memory
{outside of mkCPU)

wpdateOperands() g

writeResuli()

sub) upd()

regFile
(mkRegFilaFull)
[1 -
doStore{) response.get(}

mkArchRegFile

foHosd() fromHast()

Figure 6: Detailed BlueSpec design diagram. Shows thefaates of all our modules and how the rules
interact with the modules. Some methods are not includetisame global processor state is missing, such
as if we are currently handling an exception or a branch.

4.2.3 Commit Rule

The Commit rule is fired when the processor is not handling>xaemion. Each cycle, the Commit rule
drains an entry from the ROB and checks the error code. If ther eode signals an exception, such as
a misaligned load or addition overflow, the commit rule widglthat the processor is now in exception
handling mode. The results of the exception causing instru@re not stored, the PC of the instruction
is stored to the epc register through the Coprocessor umitlze PC is set to the address of the interrupt
vector (0x1100 in sMIPS) through the fetch unit.

If the error code reveals that the entry corresponds to & stocoprocessor write, the Commit rule
tells the load/store unit to actually queue up the storeestjor do the write. If the instruction was a taken
branch, the Commit rule gets the new PC from the Branch umitsats that as the PC through the Fetch
unit. Otherwise if the error code denotes that the instoncts normal, the Commit rule will simply writes
the result in the appropriate architecture register.

4.2.4 Undo Rule

The Undo rule is fired only when the processor is handling aregtxon, which is only flagged by the
Commit rule. The Undo rule drains one entry from the ROB eadecuntil the ROB is empty. For
each instruction drained, if the error code denotes thairisteuction is a store, a coprocessor write, or a
branch, the Undo rule tells the appropriate functional tmibort that operation and abandon any cached
information. Since the functional units do not cause angme changes before the instruction commits,
there is no need to roll back anything.

If the error code denotes that the instruction caused arptiroeor is a regular instruction, the Undo
rule gets the register that the instruction writes to andesoghe value of that register from the Architectural
Regfile over to the Rename Regfile. Since no results are wiitte the Architectural Redfile after an ex-
ception is encountered, the values in the ArchitecturafiRedp not contain changes caused by instructions
that came after the excepting instruction.

Our design recovers only the registers that need to be resvather than copying the entire Archi-
tectural Regfile over to the Rename Regfile. Also, we have fbumdl all the decoded instructions finish
executing before we finish handling an exception. If severd instructions were decoded past the excep-
tion causing instruction, this can take quite some time. Wse this design because it was easier to adapt
our original design in this way than to add a global clear aiga all the units and copy all of the contents
of the Architectural Regfile over to the Rename Redfile.

4.2.5 Decode Rule Changes

The decode rule requests a token from the ROB for each itistnucThis token replaces the instruction
token in our original design and is used for renaming in thadRee Regfile. The decode rule also stalls
when the processor is handling an exception.

4.2.6 Functional Units Changes

The Functional units were changed in several ways to sugpedise exceptions. In our original design,
not every instruction needed to go to the writeback stageessiome instructions do not write back results.
However, because the ROB needs to keep track of the orddringtalictions, we changed functional units
to issue placeholder results even for instructions suckoasss

A second change moved the execution of external changesrimitdime rather than execution time. In
the Branch unit, this involved remembering the new PC of adirahat is resolved to be taken. At commit
time, the Commit rule takes the new PC and sends it to the kmithExecution of additional branches is
delayed until taken branches are committed. In the Copsocdsdnit, the value to be written is stored and
the register is actually written when the Commit rule coma®ss the instruction. This unit is also stalled
until writes complete.

The changes to the Load/Store unit were more extensive suragiginal unit was incorrect and allowed
the reordering of stores and loads. We changed the resemattition in this unit to behave like a FIFO so
loads cannot be reordered with respect to stores. When @ isigtruction is ready, the address and the
value are saved in a one-slot cache. When the Commit rukedzaBt or e(Tr ue) ,the cached information
is turned into a store request and actually queued up. Na sethee instruction can be executed until the
previous store is committed. If the instruction is a loa@, dddress of the load is checked with information
in the cache. If the addresses match, a load request is neat tmawlemory, and instead, the cached value is
used as the result.

4.3 Wrestling BlueSpec Method Conflicts

Our original design could not reach high performance partgecause there were many methods that could
not be called in the same cycle. Pretty much every one of odufas that is accessed from multiple rules
ended up having this issue.

The completion buffer of instruction fetches should be ablédandler eser ve, conpl et e, and
dr ai n all in the same cycle. Similarly, the reorder buffer needsupport those three operations simulta-
neously as well. The main register renaming file needs to@tpenaming a register with a tagged value
and the update of a tagged value to a real result in the santie dynd last, the reservation stations need
to support placing a new instruction in, removing a readtrirtgion, and updating operands all in the same
cycle.

It is fundamentally impossible to accomplish all of thedéedént tasks by only using multiple methods.
For instance, with the reservation stations, if each ofdlggserations are placed in their own methods, the
methods will conflict, because all of the methods will do eafithe station status bits, and potentially do
writes to the station status bits. However, it is actuallfe ar these methods to be run in parallel because
each method only modifies one kind of status, but the BlueBSpepiler cannot infer that much information.

There are two solutions that are possible to the problem. 0haion is to just make one method that

10

Fetch | Issue | Exec CDB/WriteBack | Commit
load
divide | load
add divide | load (not ready)
add load (not ready)
divide (not ready)

load

divide

add

divide load

add

divide add load

divide

divide
add

Figure 7: Some instructions moving through the pipeling. tiee instructions entered the execute stage,
and then all of the results became ready during the same (edoad took 3 cycles, the divide took
2 cycles, and the add only takes 1 cycle). The results arerti@med out onto the CDB one at a time,
in a fairly arbitrary order (ranked by which unit, not by pram order). In this case, the divide and add
instructions were reordered, but the commit stage actgallgmits the instructions in program order.

does all of the functionality that is needed. However, thisxceptionally difficult to use, because this one
method must be called from just one rule, meaning that you dwsearly everything in your system in one
rule. The much more reasonable solution is to make each chethyy its arguments ontoRMre. There
can then be a rule inside of the module that will look at allef televant RWires and update all of the state
within the module. It is very important that this rule eitheractivated every time one of the methods is
called, so that state updates are not mixed. As a generabfrthemb, any module using this model should
doall state updates in that rule (do not update state in any of tileatd&) so that there is no risk of conflicts.

Using this trick, the methods in the reservation stationthe register rename file were changed such
that none of them conflicted. The reorder buffer and fetchwiare changed to use a hand made completion
buffer based off of the lab 4 material that usgahf i gReg components to avoid method conflicts.

Once all of these changes were made, all of our main rulesl dmalat the same time, resulting in many
fewer pipeline bubbles. As traces in our results sectionwsktds possible for all fetch rules, the decode
rule, the execute rules, the writeback rule, and the comurtatto all fire in the same cycle.

5 High Level Pipeline Design

Due to variable memory latencies and computation costsuct®ons do not take a constant amount of
time to go through our processor. The first time that our @soereferences an instruction is when the
address of that instruction has been calculated by the teiithThis address is then sent to the instruction
memory. Some number of cycles later, the actual instruéiaeturned from memory. The instruction is
then decoded, its operands are fetched (if available), taisddsued to an appropriate reservation station.
The instruction may wait here for its operands to be caledlar for its functional unit to become ready

11

to execute it. If it is a simple integer instruction, the ftianal unit will take only one cycle to calculate
and broadcast the results on the CDB. If the instruction @ad,lit may be many cycles before the memory
returns a result. Finally, in our reorder buffer impleméiot the instruction may wait in the ROB until all
instructions before it (in program order) have been fullg@xed. Once the instruction is committed, it has
essentially been executed and it no longer uses any resoomafie processor.

Our maximum instruction window will be determined by theestf many of our buffers, and the max-
imum delay of memory. Assuming that we do not have a ROB, the af the instruction window will
essentially be the sum of the maximum number of instructlmeiag fetched at one time, the number of
instructions being issued at one time, the number of reiervatations that we have, and the maximum
number of instructions that are in any of the functional siait a given time. With a ROB, the maximum
instruction window is simply the number of instructionsrmefetched at once plus the number of entries in
the ROB.

5.1 Structural Hazards

The most obvious structural hazard possibility is that nibas one result could arrive each cycle, but only
one result can be transmitted on the CDB. We resolve thisridmastoring results in each functional unit
until they have been transmitted over the CDB. This also méhat each functional unit will not allow
more instructions to enter it than it has spaces in its outpffer. This solution makes sense because other
than memory operations, most operations are either verydemgle cycle integer operations), and then the
output buffer is really just a pipeline register, or veryvglflike divide instructions), and having an output
buffer does not seem expensive.

Another way of looking at this is to see how back-pressureka/am our system. The execution core
can exert back pressure on the fetch unit by not taking iatros from it. This will cause the fetch unit’s
completion buffer to fill up, and eventually the fetch unithgtop making new requests to main memory.

The functional units can exert back pressure on the issge Stanot emptying the reservation stations.
If the decoder can not issue an instruction because thererisservation station available, then it will stop
issuing instructions until there is room.

The CDB takes results one at a time from the functional uritee functional units are self stalling in
that they will not take in new inputs unless they have roontlierresults.

And finally, in the precise exception supporting impleméotg the ROB exerts back pressure by re-
quiring decoded instructions to reserve a spot in the ROBrbehey are issued.

6 Verification

Most of our testing is at the CPU module level. By loadingetiéint programs into memory, we test many
different aspects of our implementation. Many of thesestast constructed with knowledge of our specific

12

implementation, and try to isolate specific systems.

We also modified the memory system to support delaying resmobased on the data that was actually
being fetched. When reading data where the high 2 bytes &ebE1A, the memory system would look at
the low 2 bytes of the word, and wait that many cycles befonerméng a result. For instance, loading the
valueOx DE1A0010 would take 16 cycles.

si npl e_i nt handl i ng. S, si npl e_2i nt _handl i ng. S Verifies that basic exception detection and
handling works. The second test file contains two back to ladcktion overflow exceptions.

regfileafter.nt.S Verifies that operations do not get committed that happear aft exception
causing instruction, even if the execution in reordered.

proper _renam ng. S Assigns many different results to the same register, thatready in different
orders, making sure that the broadcast of results and tignass of tags works.

full rstati on. S Verifies the case where we run out of reservation stationsuimta In this case, the
decode stage stalls before issuing more instructions.

addl_test. S,add2_t est. S Simply has many back-to-back dependent addsl(), or non-dependent
adds &dd?2) so that we can look at the trace output and see what is hagpeni

si npl el oadst or e_hazard. S,si npl el oadst or e_.hazar d2. S Creates two situations where loads
and stores from the same address can be executed out of bnédests ensure that the correct value
is returned from memory.

sel f test. S,al |l test. S, etc. These test the basic SMIPS functionality.

These are most of the tests that we actively used in verifgurglesign. It is by no means complete, and
it is very likely that our design has flaws. For instance, éiemo test that checks an exception instruction
in a branch-delay slot.

In addition, we did not test any of the functionality that wd dot actually implement. This includes all
of the coprocessor except for the EPC and to/from host ergisiis well as multiply and divide instructions.

7 Results

We successfully implemented a SMIPS CPU that can handléspregceptions and execute instructions out
of order.

We have size and timing numbers from both our original wagkimplementation and our optimized
implementation that includes precise exception suppdres& numbers are shown in figure 8.

More directly, changing our BlueSpec data structures sotiger methods did not conflict doubled our
IPC from .25 to .5 on the gsort benchmark.

13

Implementation Area Frequency
Base (no exceptions, unoptimized) 0.236 finB00 MHz
Final (exceptions, optimized) 0.338 Mm 294 MHz

Figure 8: Area and frequency measurements after synthesisif first working implementation, which had
no precise exception support and had many conflicting Blae&pethods, and our final implementation.

Build Phase Target Time (min:sec)
BlueSpec nmk CPU. v 1:34

VCS si nv 0:04

tests run-tests 0:12

Synopsis synth 16:23
Encounter pr 18:45

Figure 9: Time to build various parts of our system on an AMD@0linux machine with 1GB of memory.
Each build phase assumes that previous build phases haydetet

Our build process usdasc- 3. 8. 43-rh7andvcs_nx7. 1. 2. Incremental compile times are shown

in figure 9.

14

