Memory Access

Scheduler

Matthew Cohen, Alvin Lin
6.884 — Complex Digital Systems
May 6, 2005

Why Use Scheduling?

m Sequential accesses to DRAM
are wasteful

m Improve latency and bandwidth of
memory requests

m Order requests to take advantage
of DRAM characteristics

DRAM Bank FSM

Reads, Writes
Activate Row

S

Row Active

NS

Bank Precharge

Memory Access Scheduling

Traditional Scheduling:

Bank O[Active | R [Precharge] Idle

Bank 1 Idle [Active [R [Precharge Idle

Bank 2 Idle Active | R [Precharge] Idle
Bank 3 Idle Active

Memory Access Scheduling:

Bank O[Active[R] Idle [Precharge] Idle

Bank 1| [Active] |[R] Idle |Precharge] Idle
Bank 2|__[Active| |R] Idle [Precharge] Idle
Bank 3 [Active [Idle| R [Idle [Precharge] Idle

= Avoid data line conflicts (read/write)
m Avoid control line conflicts

- " JE
H|gh-Leve| Architecture Instruction and Data Cache
| o m Separate |- and D-caches
nstructions: . .
T | st m Fully parameterizable sizes
il Cache .
L «=| controlter vermory m Direct mapped caches
CPU Scheduler DRAM m Write-through, no-write-allocate
. L Data .
% | olache m Four words per cache line
D i ontroller
Data V| Tag Word 0 Word 1 Word 2 Word 3
V| Tag Word 0 Word 1 Word 2 Word 3
77 V| Tag Word 0 Word 1 Word 2 Word 3
- " A

Incremental Design

m Fully blocking, single word per line

m Fully blocking, four words per line

m Hit under miss
m Miss under miss

Necessary for full benefits of scheduling

Non-Blocking Cache Architecture

BUFTAG|VO0|V1|V2|V3[TagOTaglTag2Tag3
m On cache load miss, [BUFTAG|vo|v1|v2|v3[TagoTaglTag2Tag3
add request to Pending BUFTAG|V0|V1|V2|V3[TagOTaglTag2Tag3
Request Buffer (PRB) BUFTAG|VO0|V1|V2|V3[TagOTaglTag2Tag3

m Place uP tag in Tag location, set Valid, issue read
request to scheduler with tag = PRB index

m If another read to same line, set tag and valid but no
new read request

m On return of data, match tag to PRB line, retrieve uP
tag of valid entries, return data to uP

Non-Blocking Cache Architecture

BUFTAG|V0|V1|V2|V3[TagOTaglTag2Tag3

m On cache store BUFTAG|VO0|V1|V2|V3[TagOTaglTag2Tag3

request, search PRB |BUFTAG|V0|V1|V2|V3[TagOTaglTag2Tag3

. BUFTAG|VO0|V1|V2|V3[TagOTaglTag2Tag3
m If already issued read SLAIRTeae

to this line, stall

High-Level Architecture

Instructions |

—PM—A Inst. —
i| Cache
D M “—i| Controller |«
3 Memory —
CPU Scheduler DRAM

_]ﬂ] H Data .

| Cache
<—MH Controller |+
Data !
" "

Scheduler Overview

m Cache misses are sent to the
scheduler

m Scheduler is responsible for
interfacing with the DRAM

m Requests may be honored out of
order

Scheduler Tasks

m Keep waiting buffers of pending memory
requests

m Prioritize accesses in waiting buffer

m Respect timing of the DRAM

m Capture data coming back from DRAM
m Keep the DRAM busy!

Scheduler RTL Design

Waiting
Buffer

Instructions _—"#|Bank0

Q Waiting \
Buffer
From Cache Bank 1 \ DRAM
Controllers
Waiting
Data Buffer / {
— — Bank 2
]ﬂ] an Back to
\ — Cache
Waiting Controllers
Buffer Yﬂm _

Bank 3
—

o
Incremental Design

m Blocking In-Order Scheduler

m FIFOs as Waiting Buffers and In-
Order Scheduling

m Real Waiting Buffers and
Interleaved Scheduling

" JE
Infinite Compile Time

m Scheduler exploded in complexity
m Huge amount of combinational logic

m Memory access scheduling is a
difficult problem

m DRAM is not designed to work easily
with scheduling

Architectural Exploration

m Change cache size to adjust cache miss
percentage

m Change PRB size to allow for scheduling
optimization

m Larger sizes should yield better results but
higher cost

Total Time to Make 6000 Random Accesses to 512 Add

60000

ssssss

50000 -

40000 -

—

Synthesis Results (area=196,117.6 ym?)

’g; —&— 128 Byte Cache
s 30000 - —=— 256 Byte Cache
E —a— 512 Byte Cache

20000 -

10000 +

0o T
1 10 100
PRB Lines
" SN " o
Conclusion Acknowledgelnents

m Memory becoming bottleneck for computer

systems

m In-order memory access is simple in logic
but wasteful in performance

m Memory access scheduling is much more
efficient in theory, but complex in

implementation

m 6884-bluespec
m 6884-staff

m groupl, for teaching us
how to use Vector, even if
you didn’t realize it...

