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Why Use Scheduling?

m Sequential accesses to DRAM
are wasteful

m Improve latency and bandwidth of
memory requests

m Order requests to take advantage
of DRAM characteristics
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Memory Access Scheduling

Traditional Scheduling:

Bank O[Active | R [Precharge] Idle

Bank 1 Idle [Active [ R [Precharge Idle

Bank 2 Idle Active | R [Precharge] Idle
Bank 3 Idle Active

Memory Access Scheduling:

Bank O[Active[R] Idle [Precharge] Idle

Bank 1| [Active] |[R] Idle |Precharge] Idle
Bank 2|__[Active| |R] Idle [Precharge] Idle
Bank 3 [Active [Idle| R [ Idle [Precharge] Idle

= Avoid data line conflicts (read/write)
m Avoid control line conflicts
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Incremental Design

m Fully blocking, single word per line

m Fully blocking, four words per line

m Hit under miss
m Miss under miss

Necessary for full benefits of scheduling

Non-Blocking Cache Architecture

BUFTAG|VO0|V1|V2|V3[TagOTaglTag2Tag3
m On cache load miss, [BUFTAG|vo|v1|v2|v3[TagoTaglTag2Tag3
add request to Pending BUFTAG|V0|V1|V2|V3[TagOTaglTag2Tag3
Request Buffer (PRB) BUFTAG|VO0|V1|V2|V3[TagOTaglTag2Tag3

m Place uP tag in Tag location, set Valid, issue read
request to scheduler with tag = PRB index

m If another read to same line, set tag and valid but no
new read request

m On return of data, match tag to PRB line, retrieve uP
tag of valid entries, return data to uP




Non-Blocking Cache Architecture

BUFTAG|V0|V1|V2|V3[TagOTaglTag2Tag3

m On cache store BUFTAG|VO0|V1|V2|V3[TagOTaglTag2Tag3

request, search PRB |BUFTAG|V0|V1|V2|V3[TagOTaglTag2Tag3

. BUFTAG|VO0|V1|V2|V3[TagOTaglTag2Tag3
m If already issued read SLAIRTeae

to this line, stall

High-Level Architecture
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Scheduler Overview

m Cache misses are sent to the
scheduler

m Scheduler is responsible for
interfacing with the DRAM

m Requests may be honored out of
order

Scheduler Tasks

m Keep waiting buffers of pending memory
requests

m Prioritize accesses in waiting buffer

m Respect timing of the DRAM

m Capture data coming back from DRAM
m Keep the DRAM busy!




Scheduler RTL Design
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Incremental Design

m Blocking In-Order Scheduler

m FIFOs as Waiting Buffers and In-
Order Scheduling

m Real Waiting Buffers and
Interleaved Scheduling
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Infinite Compile Time

m Scheduler exploded in complexity
m Huge amount of combinational logic

m Memory access scheduling is a
difficult problem

m DRAM is not designed to work easily
with scheduling

Architectural Exploration

m Change cache size to adjust cache miss
percentage

m Change PRB size to allow for scheduling
optimization

m Larger sizes should yield better results but
higher cost
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Conclusion Acknowledgelnents

m Memory becoming bottleneck for computer

systems

m In-order memory access is simple in logic
but wasteful in performance

m Memory access scheduling is much more
efficient in theory, but complex in

implementation

m 6884-bluespec
m 6884-staff

m groupl, for teaching us
how to use Vector, even if
you didn’t realize it...




