
Memory Access 
Scheduler
Matthew Cohen, Alvin Lin
6.884 – Complex Digital Systems
May 6th, 2005



Why Use Scheduling?
Sequential accesses to DRAM 
are wasteful
Improve latency and bandwidth of 
memory requests
Order requests to take advantage 
of DRAM characteristics



DRAM Bank FSM

Idle Row Active

Activate Row

Bank Precharge

Reads, Writes



Memory Access Scheduling
Active
Traditional Scheduling:

Bank 0 R Precharge Idle
Active R Precharge

Active R Precharge
ActiveIdle

Idle
Bank 1 Idle Idle

IdleBank 2
Bank 3

Memory Access Scheduling:
Bank 0
Bank 1
Bank 2
Bank 3

Active R Precharge
Active

Active
Active

R
R

R

Precharge
Precharge

Precharge

Idle Idle
Idle
Idle
Idle

Idle
Idle

IdleIdle

Avoid data line conflicts (read/write)
Avoid control line conflicts



High-Level Architecture

CPU

Inst.
Cache

Controller

Data
Cache

Controller

Memory
Scheduler DRAM

Instructions

Data



Instruction and Data Cache

Separate I- and D-caches
Fully parameterizable sizes
Direct mapped caches
Write-through, no-write-allocate
Four words per cache line
V Tag Word 0 Word 1 Word 2 Word 3
V Tag Word 0 Word 1 Word 2 Word 3
V Tag Word 0 Word 1 Word 2 Word 3



Incremental Design
Fully blocking, single word per line
Fully blocking, four words per line
Hit under miss
Miss under miss

Necessary for full benefits of scheduling



Non-Blocking Cache Architecture

On cache load miss, 
add request to Pending 
Request Buffer (PRB)

Place µP tag in Tag location, set Valid, issue read 
request to scheduler with tag = PRB index
If another read to same line, set tag and valid but no 
new read request
On return of data, match tag to PRB line, retrieve µP
tag of valid entries, return data to µP

BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3



Non-Blocking Cache Architecture

On cache store 
request, search PRB
If already issued read 
to this line, stall

BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3



High-Level Architecture

CPU

Inst.
Cache

Controller

Data
Cache

Controller

Memory
Scheduler DRAM

Instructions

Data



Scheduler Overview
Cache misses are sent to the 
scheduler
Scheduler is responsible for 
interfacing with the DRAM
Requests may be honored out of 
order



Scheduler Tasks
Keep waiting buffers of pending memory 
requests
Prioritize accesses in waiting buffer
Respect timing of the DRAM
Capture data coming back from DRAM
Keep the DRAM busy!



Scheduler RTL Design
Waiting
Buffer
Bank 0Instructions

Data

Waiting
Buffer
Bank 1

Waiting
Buffer
Bank 2

Waiting
Buffer
Bank 3

DRAMFrom Cache
Controllers

Back to
Cache

Controllers



Incremental Design
Blocking In-Order Scheduler
FIFOs as Waiting Buffers and In-
Order Scheduling
Real Waiting Buffers and 
Interleaved Scheduling



Infinite Compile Time
Scheduler exploded in complexity
Huge amount of combinational logic
Memory access scheduling is a 
difficult problem
DRAM is not designed to work easily 
with scheduling



Architectural Exploration

Change cache size to adjust cache miss 
percentage
Change PRB size to allow for scheduling 
optimization
Larger sizes should yield better results but 
higher cost



Total Time to Make 6000 Random Accesses to 512 Addresses

0

10000

20000

30000

40000

50000

60000

1 10 100

PRB Lines

Ti
m

e 
(n

s) 128 Byte Cache

256 Byte Cache

512 Byte Cache



Synthesis Results (Area = 196,117.6 µm2)



Conclusion
Memory becoming bottleneck for computer 
systems
In-order memory access is simple in logic 
but wasteful in performance
Memory access scheduling is much more 
efficient in theory, but complex in 
implementation



Acknowledgements
6884-bluespec
6884-staff
group1, for teaching us 

how to use Vector, even if 
you didn’t realize it…


