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Why Use Scheduling?
Sequential accesses to DRAM 
are wasteful
Improve latency and bandwidth of 
memory requests
Order requests to take advantage 
of DRAM characteristics
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Memory Access Scheduling
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Avoid data line conflicts (read/write)
Avoid control line conflicts
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Instruction and Data Cache

Separate I- and D-caches
Fully parameterizable sizes
Direct mapped caches
Write-through, no-write-allocate
Four words per cache line
V Tag Word 0 Word 1 Word 2 Word 3
V Tag Word 0 Word 1 Word 2 Word 3
V Tag Word 0 Word 1 Word 2 Word 3



Incremental Design
Fully blocking, single word per line
Fully blocking, four words per line
Hit under miss
Miss under miss

Necessary for full benefits of scheduling



Non-Blocking Cache Architecture

On cache load miss, 
add request to Pending 
Request Buffer (PRB)

Place µP tag in Tag location, set Valid, issue read 
request to scheduler with tag = PRB index
If another read to same line, set tag and valid but no 
new read request
On return of data, match tag to PRB line, retrieve µP
tag of valid entries, return data to µP

BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3



Non-Blocking Cache Architecture

On cache store 
request, search PRB
If already issued read 
to this line, stall

BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
BUFTAG V0 V1 V2 V3 Tag0Tag1Tag2Tag3
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Scheduler Overview
Cache misses are sent to the 
scheduler
Scheduler is responsible for 
interfacing with the DRAM
Requests may be honored out of 
order



Scheduler Tasks
Keep waiting buffers of pending memory 
requests
Prioritize accesses in waiting buffer
Respect timing of the DRAM
Capture data coming back from DRAM
Keep the DRAM busy!



Scheduler RTL Design
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Incremental Design
Blocking In-Order Scheduler
FIFOs as Waiting Buffers and In-
Order Scheduling
Real Waiting Buffers and 
Interleaved Scheduling



Infinite Compile Time
Scheduler exploded in complexity
Huge amount of combinational logic
Memory access scheduling is a 
difficult problem
DRAM is not designed to work easily 
with scheduling



Architectural Exploration

Change cache size to adjust cache miss 
percentage
Change PRB size to allow for scheduling 
optimization
Larger sizes should yield better results but 
higher cost
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Synthesis Results (Area = 196,117.6 µm2)



Conclusion
Memory becoming bottleneck for computer 
systems
In-order memory access is simple in logic 
but wasteful in performance
Memory access scheduling is much more 
efficient in theory, but complex in 
implementation
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