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1 Proposal

For our 6.884 project we propose to design an SMIPS core. This is one of the standard projects. We
will optimize the core by adding various components. We expect our CPU will require 8 cycles before
the data enters the execution units. Our SMIPS core will be single-issue. Our basic design have the
following specifications:

• Single-issue processing

• In-order execution

• No branch prediction

For our design exploration, we will experiment with the following possible enhancements:

• Out-of-order execution

• Branch history table

• Branch target buffer

• Speculative load-dependent instruction scheduling

• Precise exception handling

The following two sections will provide some detail as to the implementation of the basic design and
design exploration methodologies.

1.1 Basic Design

The basic design will be composed of following major modules, which will be discussed in the upcoming
sections:

1. PC GEN

2. FETCH

3. DECODE

4. IPCF

5. RENAME

6. ROB

7. RREAD

8. EXEC

9. RETIRE
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1.1.1 PC Generate

PC GEN generate a new PC on every cycle. In the basic version it will simply increment the old PC
by 4.

1.1.2 Fetch

Fetch will interface with the outside memory module to fetch an instruction. It will wait patiently while
the memory module makes up its mind about what instruction to return.

1.1.3 Decode

Decode will take the 32-bit SMIPS instruction and decode it into an opcode, information about which
registers are being read/written and various other miscellaneous and useful information.

1.1.4 IPCF

IPCF is simply a file of 32-bit PC addresses for instructions. Any instruction that may need its PC in
the course of execution will store the PC in the IPCF and receive a tag. Before executing the instruction
will retrieve its PC. We originally added it to reduce the amount of storage necessary in the ROB.

1.1.5 Register Rename

Register rename will keep track of which architectural register is assigned to which physical register.

1.1.6 Re-order Buffer

The reorder buffer will not reorder. The ROB will schedule instructions, taking care to avoid write back
conflicts. Load instructions will not be allocated a write-back slot, and will have to wait for an opening
(which will come).

1.1.7 Register Read

RegRead will retrieve the values from the physical register file. It will also retrieve the PC from IPCF
if the instruction has stored one there.

1.1.8 Execute

Execute will execute instructions and arbitrate results coming from the memory module.

1.1.9 Retire

Retire will take an executed instruction and handle its retirement. Usually that will mean updating
the renaming table/RAT and/or freeing an entry in the IPCF. On a branch mispredict, though, it will
notify all the components of the CPU that they should do something special.

1.2 Design Exploration

During design exploration, we plan to enhance the system as previously described. The following section
will describe in further detail our proposed implementation for these enhancements.

1.2.1 Out-of-order Execution

To facilitate out-of-order execution, we plan to modify the re-order buffer to schedule instructions out of
order when possible. We will also change RETIRE to kill any instructions that have left the ROB, but
should not be executed (due to a branch mispredict or an exception). We will still retire all instructions
in order.
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Figure 1: Basic Design data flow

1.2.2 Branch History Table

We will implement a standard BHT with a global history, as described in 6.823 slides. RETIRE will
notify the BHT of whether branches are resolved taken or not to facilitate the BHT’s learning.

1.2.3 Branch Target Buffer

We will implement a standard BTB, as described in 6.823 slides. RETIRE will notify the BTB of actual
resolved branch targets to facilitate the BTB’s learning.

1.2.4 Speculative Load-dependent Instruction Scheduling

We will speculatively schedule instructions that require the return value of a load instruction. Since
the load can result in a cache miss, we will have a mechanism to kill these speculative instructions if
necessary.

1.3 Design Drawing

Figure 1 depicts the data flow for our basic design. This does not include any control signals. Note that
red dotted arrows depict FIFOs while solid black arrows depict function calls.

2 UTL Description

Our UTL description is rather simple. Our UTL-level description includes one CPU module, whose
architectural state includes the PC, the architectural registers, the coprocessor registers. The processor
module provides an interface for one instruction fetch port, one data memory read/write port, and a
host interface. The reason that our UTL description does not include the internal modules within the
CPU is that the Retire unit must clear many FIFOs in the event of a branch mispredict. Therefore, to
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Figure 2: UTL depiction of our CPU

define a single module such as Execute as a single unit would not fully satisfy the specifications of a
unit since a unit can only interact with other units by enqueuing to and dequeuing data from FIFOs.

Our CPU, however, does meet the specification for a UTL unit since it communications with instruc-
tion and data memory through valid transactions. Figure 2 depicts in more detail the UTL description
for our baseline design.

3 Design/Testing

Our major goal in testing will be to ensure that our design works correctly as a whole. We will write short
programs which will test functionality of various instructions and features such as throwing exceptions.
The testing will work similarly to what labs 1 and 2 did - simply observe the output of the tohost port.

We will also write an architectural simulator of the SMIPS CPU, and use it to verify that the
instructions we’re retiring write correct values to the register file and/or memory. This simulator will

not deal with exceptions or COP0 instructions. In order to use it correctly we will add a small module
to the retire unit which will print to the screen which instruction is being retired, what its parameters
were and what value is written back as a result of executing this instruction. This type of testing will
allow us to run larger programs through our processor and check the correctness of their execution very
quickly. The test rig will be able to report which instruction executed incorrectly, making debugging
much easier.1

1May 11, 2005: We did not find a need for such a complex testing strategy. In reality, we found that simply inspecting

traces of execution and eyeballing the source code was sufficient to solve our problems fairly quickly.
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Figure 3: Handling of Branch Mispredict and a regular Synchronous Exception

4 Basic Micro-architectural description

Figure 3 shows our plan for processing branch mispredictions and exceptions. The basic data flow has
already been shown in Figure 1.

Below we discuss the functions and interfaces each module uses.

4.1 PC GEN

PC GEN generates PC addresses for instructions to be fetched. It does no prediction or checking of
whether the PC produced is correct. It simply increments the PC counter by 4 on every cycle. If a
branch mispredict or an exception happen, later stages in the pipeline will instruct PC GEN to begin
producing PCs from a new address, using the goto method. This is the target of the branch. The
branch delay slot (BDS) is re-fetched by passing the address directly to the instruction fetch unit. PC
GEN is depicted in Figure 4.

Inputs: None

Outputs: pcGenQ

Methods:

goto(PC) : Clears pcGenQ and starts fetching from a new address

Rules:

nextPC : Enqueues PC onto pcGenQ and computes the next value of PC (PC + 4)

State:

PC : value of the program counter
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4.2 FETCH

Fetch sends an address of an instruction to the memory system and awaits the answer. Fetch can
pipeline instructions fetched by putting the addresses of oustanding fetches on the instrReadPCWaitQ
FIFO. Fetch assumes that requests will come back in order from the memory. If a branch mispredict or
an exception happen, Fetch is notified through the fetchBDS method. When that happens, Fetch stops
sending instruction fetch requests to memory, waits for all outstanding requests to complete (indicated
by instrReadPCWaitQ being empty), and starts fetching instructions, first from the BDS, and later
from addresses in the pcGenQ. Fetch is depicted in Figure 4.

Inputs: pcGenQ

Outputs: fetchQ

Methods:

getInstrAddr () : Returns the address of the next instruction to fetch This is an exteranlly visible

function.

putInstr (instruction) : Receives the fetched instruction This is an exteranlly visible function.

fetchBDS (bdsAddr) : Marks all outstanding instruction fetches as invalid and clears fetchQ. Any
outstanding instruction fetches will be silently processed, but not put in fetchQ. Will start
fetching from bdsAddr.

Rules:

finishFetchBDS : Fires when the read PC queue is empty and changes the status to fetch the BDS

State:

instrReadPCWaitQ : internal buffer that holds values of PCs to be fetched

bdsAddr : contains the value of the BDS address if an instruction has a BDS

status : contains the status of the fetch unit - whether it should fetch normally, wait for the read PC
queue to empty, or fetch the branch delay slot

4.3 DECODE

Decode receives an instruction in raw format (a 32 bit integer) and decodes it into an opcode, source
and destination register indexes and the immediate value. Decode also indicates whether the instruction
is in the branch delay slot, by inspecting the opcode of the last instruction it decoded. On a branch
mispredict, Decode assumes that the next instruction was a “J”. On an exception, previous instruction
is set to InvalidException. Decode also indicates if an instruction needs to know its PC at execution
time. Instructions that need to know their PC include all jumps and branches, and any instruction that
can cause an exception. Decode is depicted in Figure 4.

Inputs: fetchQ

Outputs: decodeQ

Methods:

branchMispredict() : clear decodeQ, reset DECODE and force next instruction to be decoded as if
it were in the BDS.

Rules:

decodeInstr : Obtains an instruction from fetchQ, appropriately decodes it, and places the result
onto decodeQ

State:

lastInstr : Stores the opcode of the last instruction decoded
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Figure 4: PC Generate, Fetch and Decode
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4.4 IPCF

IPCF is used to “rename” instruction addresses to save space in the ROB. An incoming instruction is
inspected for whether it needs to remember its PC at execution time. If it does, a slot in the IPCF is
allocated for it, and the PC is renamed to a much smaller tag. The instruction with a renamed PC is
output with no other changes. On an exception or a branch mispredict, IPCF will free all its entries.
An entry in the IPCF is also freed when an instruction that allocated the entry is retired. The IPCF is
depicted in Figure 5.

Inputs: decodeQ, retireIPCQ

Outputs: ipcfQ

Methods:

clear () : clear ipcfQ and invalidate all entries currently in the IPC table.

Rules:

putIPC : Obtains value from decodeQ, creates a tag for its PC, stores the PC into the appropriate
slot of the IPC table, and passes the instruction onto ipcfQ

retireIPC : Obtains value from retireIPCQ and frees the appropriate index in the IPC table by
updating lastFree

State:

firstFree : indicates the first available free entry in the IPC table

lastFree : indicates the last available free entry in the IPC table

ipcTable : table that includes all the PC values stored, indexed with a tag

4.5 Rename

Rename unit renames architectural registers to physical registers. Physical registers are allocated from
a free list of registers, which is implemented using a simple table. For every register read, Rename
checks if the architectural register has been renamed and new value not yet committed. If so, the ROB
entry of an instruction which will compute the value of the register is read from renameTblROB. For
every register written, Rename remembers which ROB entry the instruction will be written to. When
an instruction is retired, Retire instructs Rename to commit the destination register to the architectural
state, by writing it to the Retired Address Table (RAT) and writes the old renamed register, which is
now free, to the free list. On an exception or a branch mispredict, Rename copies all the entries in the
RAT to renameTbl, thus restoring the architectural state. The free list does not need an update, in
case of a branch mispredict or an exception, as Rename only overwrites entries in the free list when a
register is being freed.

In order for entries renameTblROB to always be correct, the ROB cannot overwrite an entry pointed
to by renameTblROB until that entry is cleared. Rename takes care of that, by throttling sending of
instructions to the ROB. ROB is notified by Rename when it can clear one of its entries. The rename
module is depicted in Figure 5.

Inputs: ipcfQ, retireRegQ

Outputs: regRenameQ

Methods:

copyRAT () : Copy the all values of the retired address table into the renaming table
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Rules:

writeRenamedReg : Only needed because we use RWires to be able to simultaneously write two
different entries in renameTbl

renameReg : Renames the source and destination registers.

retireReg : Commits a renamed register to the architectural state.

State:

renameTbl : register rename table in which each entry consists of a renamed register

rat : retired address table containing values of committed registers for each architectural register

renameTblROB : table of ROB indexes to indicate which instruction is computing the value of
which register.

freeList : list of available physical registers

firstFree : index into freeList of first available physical register

lastFree : index into freeList of last available physical register

firstFreeROBIndx : next free slot in the ROB

firstBusyROBEntry : index of the oldest instruction in the ROB

4.6 ROB

The ROB acts as both a reorder buffer and a write-back buffer. An instruction entering the ROB checks
instructions which compute its operands to see if they’ve already been dispatched. If they have, then
the operands are assumed to be valid. The instruction is now ready to enter the ROB.

On every cycle, the ROB attempts to schedule an instruction. Instructions are scheduled in-order
and non-speculatively. That means, that any instruction that can potentially change the control flow of
the program stops the scheduler from dispatching subsequent instructions until it’s been written back.
The instruction to be dispatched is pointed to by undispatchedROBEntry. The destination register
of the dispatched instruction is broadcast to all the entries in the ROB. If any instruction uses the
soon-to-be valid register, it updates it as a valid source register.

An instruction returning from the Execute unit carries an execution code, which is written back to
the ROB. This code indicates to the scheduler and the write back rule whether the following instruction
can be dispatched, or if a new stream of instructions need to be fetched. If the code is not “OK”, the
PC of the instruction is saved.

Once an instruction has been written back, it can be sent to the Retire unit. Instructions are retired
in-order. If the instruction came back with a non-OK execution code, its PC will be sent to Retire as
well.

Inputs: renameQ, doneQ

Outputs: robQ, retireDataQ

Methods:

clear() : Clears the ROB, resetting the values of firstFreeROBEntry, firstBusyROBEntry,
undispatchedROBEntry, and firstNonRetiredROBEntry. Also resets schedState to schedule.

Rules:
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Figure 5: IPCF and Register Rename
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enterROB : Obtains an instruction from renameQ, creates an ROB entry for that instruction, and
places it into the ROB. This rule also appropriately updates the value of firstFreeROBEntry and
firstBusyROBEntry.

scheduleInstruction : Dispatches the first in-order undispatched instruction if it is ready. If it is
ready, it will output the instruction onto robQ. If this instruction has an IPC, which means it
could cause a mispredict or throw an exception, this rule changes schedState to wait.

writeBackInstr : Obtains an instruction from doneQ, and if the instruction was a mispredicted
branch, updates the value of pcAfterBDS and faultPC to reflect that.

sendInstrToRetire : If firstNonRetiredROBEntry is ready to be retired, this rule outputs the
instruction onto retireDataQ so it can be retired.

State:

robEntries : ROB table, in which each entry consists of an instruction’s opcode, IPC index, sources,
destinations,and whether or not those sources and destinations are valid

firstBusyROBEntry : indicates the index of the first busy ROB entry

firstFreeROBEntry : indicates the index of the first free ROB entry

undispatchedROBEntry : indicates the index of the first undispatched ROB entry

firstNonRetiredROBEntry : indicates the index of the first non-retired ROB entry

pcAfterBDS : PC of the branch delay slot of an instruction whose branch was mispredicted. We
need this so that in case a branch was mispredicted, we will not perform kill operations until all
instructions before it have been retired.

faultPC : PC of the instruction whose branch was mispredicted. We need this for the same reason
that we need pcAfterBDS.

schedState : Keeps track of whether the ROB should try to schedule the next instruction or wait.

4.7 RegRead

RegRead contains the physical register file. For every instruction, RegRead reads the values of the
instruction’s argument registers. If the instruction needs its PC, it is read from the IPCF. On every
cycle, a register from Execute can be written back to RegRead. This value is also by-passed to the
instruction whose arguments are being read.

Inputs: robQ, writeBackQ

Outputs: regReadQ

Methods:

clear () : clears regReadQ

Rules:

outputRegRead : Performs a bypassing operation using RWires, so that the current instruction will
be able to see the value written by the previous instruction, if necessary

doRegRead : Obtains an instruction from robQ, gets the values of the sources from registerFile, and
outputs the information onto regReadQ

doWriteBack : Obtains a register index and value from writeBackQ and updates registerFile

State:

registerFile : contains the physical register file
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Figure 6: Reorder Buffer
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4.8 EXEC

Executes the instruction. Since the writeBackQ is a FIFO, the incoming instruction may not have seen
the result of the last instrcution. Exec will check for that and perform a by-pass of an argument, if
necessary. A memory instruction is sent to the memory unit. Stores are assumed to complete correctly.
A load causes a stall in Execute, and waits until the load completes and memory unit returns the result.
A branch which is mispredicted casuses the instruction to receive a MISPREDICTED code, which will
trigger a global flush and get the CPU to start fetching a stream of instructions.

Inputs: regReadQ

Outputs: executeQ, writeBackQ, doneQ

Methods:

killLastInstr() : invalidates the value of lastResult

Rules:

doExecute : When executeStatus is Normal, obtains an instruction from regReadQ and computes
the value of the destination, resolves a branch, or writes to a coprocessor register depending on
what is necessary for that instruction. When finished, it will enqueue the instruction onto
executeQ.

completeLoad : Waits for the data from a memory load request operation to return

State:

executeStatus : indicates whether or not Execute should normally perform computations for an
instruction or wait for a memory load request to return

lastResult : stores the last value computed by execute and put onto executeQ (used to bypass)

lastResultValid : indicates whether or not the last value computed by execute was valid

4.9 RETIRE

Retire coordinates the control of the CPU. Retire receives instructions with their execution code and
information about their destination registers. It instructs RegRename and IPCF to free appropriate
resources allocated by the instruction (by sending a token through appropriate FIFOs). If the instruction
has a non-OK execution code, Retire instructs all modules to flush their current state and prepare for
a new stream of instructions. PCGen receives the address of the target of a mipsredicted branch, while
Fetch potentially receives the address of the branch delay slot instruction.

Inputs: retireDataQ

Outputs: retireRegQ, retireIPCQ

Methods:

none

Rules:

doRetire : Cleans up any resources allocated for the instruction. Instructs RegRename to commit
the result of this instruction to the architectural state.

doBranchMispredict : After the branch has been retired, gets the CPU to start executing from the
branch target.

State:

status : indicates whether the retire module should retire instructions normally or perform a branch
mispredict
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Figure 7: Register Read (with PC read), Execute and Write Back
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Figure 8: Retire

5 Design Exploration

5.1 Branch Prediction

Figure 9 depicts our branch prediction implementation.

5.1.1 BHT

We implemented branch prediction through a branch history table by inserting a module between
Decode and IPCF. We keep a history in a table, indexed by lower-order biss of PC. Each entry contains
a standard 2-bit history. All values in the BHT are intialized to weakly taken. Every time a decode-time
predictable branch enters the BHT module (all branches, all jumps except JR and JALR), we predict
whether or not the branch should be taken based on the appropriate value in the BHT. For J and JAL
instructions, the BHT does not actually perform any prediction, but simply computes the target of the
branch.

In order to start fetching instructions from the new predicted PC location, the target of the branch
and the address of the BDS is sent to Retire through takeBranchDataQ, which then flushes PCGen,
InstrFetch and Decode modules and gets them to fetch instructions from the new location. In the mean
time, the BranchPredict unit enters a stall state to prevent execution of incorrect instructions.

5.1.2 BTB

In addition to the BHT, we implemented a small BTB in the PCGen unit. The BTB only predicts
branches that can be predicted by the BHT. This was done in order to avoid having to resolve incorrectly
computed targets in Execute. Our scheme does not even check whether the target was predicted
correctly, only whether the branch was correctly predicted to be taken. This method works correctly
unless self-modifying code is used. Fixing this problem would not be difficult, but we are running out
of time to do it.

When the BHT is predicting a branch, and finds that the branch’s history is strongly biased to be
taken or not taken, it will inform the BTB of the PC of the instruction of the target of the branch. If
the branch is predicted taken, the BTB will store the prediction in its table. If the branch is predicted
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Figure 9: Branch Prediction through a combination of BTB and a BHT
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not taken, BTB checks whether it is currently predicting this branch, and if it is, it invalidates the
entry, thus effectively making the prediction “not taken”.

When the BTB finds a match between the PC and an entry in its table, it begins fetching from
a new address, and marks the instruction as “branch taken”. The BHT later checks the prediction,
and if it turns out that the BHT would predict the branch as not taken, it performs the standard
“mispredict” procedure: inform Retire of branch target and BDS addresses, and stall until Retire
handles the mispredict.

5.1.3 PCGen

Inputs: btbUpdateQ

Outputs: pcGenQ

Methods:

goto(PC) : Clears pcGenQ and starts fetching from a new address

Rules:

nextPC : Enqueues PC onto pcGenQ and computes nextPC to be PC+4. If PC is predictable
through the BTB, sets btbTarget up and indicates that the instruction is a branch taken.

State:

PC : value of the program counter

btb : Branch Target Buffer

btbTarget : predicted target of a branch

5.1.4 BranchPredict

Inputs: decodeQ, bhtUpdateQ

Outputs: ipcfQ, takeBranchDataQ, btbUpdateQ

Rules:

predictBranch : Predicts whether an instruction is a branch to be taken or not. Also sends
prediction data to the BTB through btbUpdateQ.

updateBHT : Receives resolved branch data from Execute through bhtUpdateQ and updates the
prediction table

Methods:

clear() : clears both the takeBranchDataQ and ipcfQ and sets the BHT status to Predict

unblock() : changes the BHT status to Predict

State:

bht : the branch history table, with each entry consisting of two bits of data denoting SNT, WNT,
WT, ST

status : keeps track of if the branch predictor should continue to take input from decodeQ and
predict, or if it should wait
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5.2 Out-of-Order Execution

In our basic design, we had created a re-order buffer. Much of the total design was ready for out-of-order
execution, but our scheduler was not able to schedule instructionsout of order. This part of our design
exploration introduced a very simple out-of-order scheduler to allow us to leverage the main advantage
of our design. Since much of the rest of our design was out-of-order ready, we did not have to make any
changes to any interfaces or modules. All changes were internal to the ROB module.

The Out-of-order scheduler uses a simple, but slow algorithm to schedule an instruction. All the
ROB entries are walked from top to bottom. Each entry is read and inspected for whether it is a valid
instruction (within the execution window described by firstBusyROBEntry and firstFreeROBEntry),
whether it is ready, needs to execute in order and if it is a barrier. Even though our CPU is single-
issue, the scheduler schedules two instructions at a time: one in-order, and one out of order. The
reason for this is that we traverse our ROB entries physically from top to bottom, rather than iterating
starting at firstBusyROBEntry and going down. Since the ROB is a circular buffer, it is possible that
instructions with smaller ROB indexes are actually younger than instructions with larger ROB indexes.
Thus it is possible that an in-order instruction that “looks” ready to dispatch will be blocked by an
instruction found later in the ROB. Finally, the scheduler keeps track of how many memory instructions
are outstanding, and will not schedule a memory instruction if a set limit has been reached.

In order to reduce the amount of changes necessary for our design to work, we also changed the
Decode module to indicate that store instructions are barriers. This means that a store instruction will
block execution of the program until all preceding instructions have executed correctly. This means that
we do not need extra communication between the ROB or Retire and the memory unit to indicate when
a store is ready to be committed to memory. We also set the limit of number of memory instructions
allowed to be in flight at a time to 1.

With those changes, our microprocessor was able to correctly pass all the tests and benchmarks.
The performance was not great, but there was a marked improvement between an in-order version and
an out-of-order version. Note, that the small changes to the design dealing with memory instructions
were made outside of the instruction scheduler. Once we had a better memory subsystem ready, we did
not have to change the scheduler again to take advantage of the new functionality.

Unfortunately, BSC was not able to compile our design with the ROB bigger than 12 entries, which
means we were not able to take full-advantage of the out-of-order capability, as even smallest loops
(vvadd) require approximately 10 instructions. This means that our CPU was never able to effectively
hide all memory access latency in the system. Our most up-to-date memory unit requires at least 3
cycles to complete a load, plus the actual latency of the memory (one cycle in our test harness).

It would be an interesting design exploration to change the scheduling algorithm to schedule instruc-
tions using a tree. It would probably give our system a big performance boost by reducing the cycle
time, as the scheduler is always very near the top of list of critical paths in a laid-out chip.

5.3 Memory Unit

Surprisingly, the memory unit turned out to be the single most difficult part of the design. After several
attempts with more complicated, but also more efficient designs, we finally settled on a design that uses
a lot of FIFOs to shuttle memory requests from one state to the next. Our current design employs six
separate main FIFOs: storesWaitingQ, loadsWaitingQ, memOpIssuedQ, loadsSentQ, loadsDoneQ and
loadsDoneNotifiedQ. In addition, we also have a storesOutstanding vector which remembers recent store
operations and a loadsBypassedQ which we use to by-pass the memory system when a load accesses an
address of a remembered store.

When a memory request arrives to the memory unit, it is classified as either a load or a store. A store
is entered onto storesWaitingQ and entered into the storesOutstanding vector. If the storesOutstanding
vector is full, we shift it up, to make space for the new store. If the request is a load, we check if it
matches a remembered store in storesOustanding. If it does, we retrieve the value stored at the address
and put the resultinto loadsBypassedQ. If it does not, we put the load onto a loadsWaitingQ.

MemUnit has two rules that graduate memory requests into the memOpIssuedQ queue, one for
loads, and one for stores. The rule for loads has been given priority, because loads are assumed to take
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longer. The rule for stores must wait until the store instruction is being retired before it sends the store
to memory. As a result, we re-order memory requests, allowing loads to by-pass stores.

If the memory subsystem asks for a new request, MemUnit simply dequeues the first request in
memOpIssuedQ. If the request is a load, it is moved to loadsSentQ. If it is a store, no further action is
necessary.

When a load result comes back from the memory sub-system, it is combined with the load request
information in loadsSentQ and sent to the loadsDoneQ.

Finally, a request in the loadsDoneQ is sent to loadsDoneNotifiedQ, and a token is sent to the ROB
to indicate that the particular load has completed and is ready to be written back. On the next bubble
in the Execute module, MemUnit sends the result of the load to the ROB.

A load that has been put onto the loadsBypassedQ is put on the loadsDoneQ at the nearest oppor-
tunity. This is done to avoid having method and a rule trying to write to loadsDoneQ, thus potentially
losing a load result.

When an exception or a branch mispredict happens, MemUnit simply clears all memory requests
sitting in storesWaitingQ, loadsWaitingQ, loadsDoneQ, loadsDoneNotifiedQ and loadsBypassedQ. The
requests in memOpIssuedQ and loadsSentQ are kept to not cause corruption and not lose committed
stores. Incoming instructions are allowed to enter storesWaitinQ and loadsWaitingQ, but cannot gradu-
ate to memOpIssuedQ. Once memOpIssuedQ and loadsSentQ are empty, memory requests in WaitingQs
are allowed to proceed to memOpIssuedQ.

This overall design is not very efficient in terms of speed and amount of silicon consumed by the
memory unit. Unfortunately, we have run out of time to improve this component.

Figure 10 depicts our memory unit functionality.

5.4 Precise Exception Handling

As another design exploration, we decided to do precise exception handling for synchronous excep-
tions. This includes the following types of exceptions: arithmetic overflow exceptions, instruction and
data memory address misalignment exceptions, coprocessor unusable exceptions, and invalid instruction
exceptions.

Each type of exception is detected at the earliest stage possible during its execution, and carries
with it a code that indicates that it will cause an exception as it moves through the CPU. For example,
coprocessor unusable exceptions and invalid instruction exceptions are detected in the Decode module,
while an arithmetic overflow exception is only detected in Execute.

When an instruction that has been flagged as one that will throw an exception enters Execute stage,
Execute calls methods in the coprocessor module that update all the relevant coprocessor registers as
speficied in the SMIPS specification. In addition, when the exception-throwing instruction is sent to
Retire, Retire will flush all the appropriate FIFOs by calling methods, and it will tell PCGen to begin
fetching from the address of the exception handler.

We, however, did not implement the RFE (Return From Exception) instruction. Also, our design
does not properly handle the case when a branch may have occurred before an exception-causing in-
struction, in which case it should have never executed in the first place. Given more time, we would
have changed our design such that the Retire module would update the coprocessor registers rather
than Execute.

6 Results

It is important to note that our main focus on improvements was architectural improvements, which
were meant to yield a high IPC. We chose architectural improvement over structural improvement,
which would have decreased our cycle time, because we felt that architectural improvements were a
“lower-hanging fruit”.

We now feel that our design is architecturally mature enough so that structural improvements would
be the next course of action. Those would include the following: a tree scheduler in the ROB, a more
efficient memory unit, reduction of single-cycle synchronization necessary for Retire to flush our pipeline.
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Figure 10: Branch Prediction through a combination of BTB and a BHT
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basic BHT OoO OoO/BHT fast (mis)predict improved mem unit final

qsort 97909 101139 87675 72549 66473 61275 55380

vvadd 96123 102127 100131 49196 45170 36163 25695

Table 1: Number of cycles to complete qsort and vvadd benchmarks. These include the VERIFY stage
for both benchmarks. qsort retires 24249 instructions. vvadd retires 18026 instructions. This table
shows improvement of our design with new architectural features.

Once those improvements would be done, we re-evaluate our design and select the next course of action,
which might be architectural or structural improvement.

The results are presented in three parts. The first part depicts architectural improvements of our
design, as we added more speculation and better scheduling ability. The second part shows how the
performance scales as we change two important parameters of the design: ROB size and number of
available memory instruction slots in the memory unit. The final part discusses synthesis and place and
route results.

6.1 Architectural Exploration

Here we present performance numbers for a number of snapshots of our design. Those include:

• our basic in-order design

• basic design with a branch history table predictor

• basic design with out-of-order scheduling

• basic design with OoO and BHT

• OoO and BHT with improved branch predict/mispredict penalty

• OoO, BHT, fast (mis)predict with speculative OoO memory unit

• OoO, BHT, fast (mis)predict with speculative OoO memory unit and BTB in PCGen; this is our
final design

We present number only for qsort and vvadd benchmarks, as those were the ones we were collecting
while doing the project. We do not have time to re-compile and re-run the two new benchmarks (median
and towers) on all of our design explorations.

Table 1 provides number of cycles the two bencharks took to complete on our various designs. For
qsort, each set of improvements added a small amount of performance. The final result is a design that
has an IPC 43% higher than the basic design on qsort. This is because qsort has a rather irregular
execution pattern with lots of memory accesses blocking the execution. vvadd has a very different
behavior. It received two very large performance improvements from an improved branch misprediction
strategy and a small BTB in the PCGen. This is because vvadd has a very regular structure with only
a single branch in the main loop. Reducing the penalty for taking that branch gives a very notable
improvement. The final IPC of vvadd is 3.7x higher than the original design.

6.2 Final Design parameter exploration

Table 2 shows the performance of our benchmarks on our CPU, depending on the size of the ROB
and number of available memory unit slots. From the table, it’s easy to see that all the bencharks are
much less dependent on having more than 3 memory slots, than they are on having many ROB entries
available. We would have liked to run our tests with more ROB entries, as vvadd does not seem to be
saturated with 12. Theoretically, assuming that memory requests come back quickly enough, our CPU
should be able to complete every 10 instruction loop in vvadd in 12 cycles for an IPC of 0.83.
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rob size / mem op
slots available vvadd qsort median towers

12/6 0.736 0.425 0.328 0.320

10/6 0.663 0.413 0.328 0.322

8/6 0.586 0.370 0.316 0.315

6/6 0.434 0.340 0.294 0.297

4/6 0.294 0.249 0.229 0.229

2/6 0.100 0.099 0.096 0.093

12/6 0.736 0.425 0.328 0.320

12/5 0.736 0.425 0.328 0.313

12/4 0.736 0.424 0.328 0.310

12/3 0.736 0.420 0.328 0.298

12/2 0.553 0.415 0.303 0.268

12/1 0.399 0.362 0.272 0.184

Table 2: IPC of our CPU with different sized ROB and MemUnit slots

6.3 Final Design Synthesis and Place and Route

Our final synthesized and laid-out design is somewhat slower than the design we presented. We have
added a good amount of logic in our MemUnit, as it now disambiguates addresses of loads and stores,
which requires doing a comparison between the incoming load and every remembered store. The design
we’re presenting here has 6 memory unit slots available, thus requires a single cycle read of 6 32-bit
values, a comparison between those and the incoming instruction’s address and a decision on where
to send the request (loadsWaitingQ or loadsBypassedQ). We’d like to re-synthesize the design with 3
memory slots available to potentially improve our performance, and definitely reduce our area.

The final placed-and-route’d design reports a clock cycle of 10.34ns and an area of 543145.9µm
2 .

Figure 11 shows some of our biggest synthesized modules.
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Physical Registers Register Rename

Execute Unit

Figure 11: Layout of various parts of the chip
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