
High Performance SMIPS Processor

Jonathan Eastep
May 8, 2005

Objectives:

Build a baseline implementation:
Single-issue, in-order, 6-stage pipeline
Full bypassing
ICache: blocking, direct mapped, 16KByte, 16bytes/line
DCache: blocking, direct-mapped, 32KByte, 16 bytes/line,
write back/write allocate
Predict branches not taken and start decode early
Perfect L2 with 6 cycle latency

Build a poweful ISA simulator/debugger with
commit stage diffing against the BlueSpec model

Objectives: 4 Design-Point Study

A: Build a baseline, high performance,
single-issue, in-order, pipelined SMIPS
processor
B: A + Incorporate early use of load data
(before data cache tag check)
C: B + simple predict backward branch
taken, forward not taken
D: B + 2-bit saturating counter branch
prediction

Baseline RTL

Baseline 6-Stage Pipeline

How Do We Do This In BlueSpec?

We represent each stage by a rule or a set of explicitly mutually
exclusive rules

rule iCacheMissHandler(serviceICacheMiss());
…
endrule
rule fetch (!serviceICacheMiss());
…
endrule

How Do We Do This In BlueSpec?

Same-cycle communication between rules accomplished
using RWire

i.e. iStream redirection for jump communicates the next pc
to fetch in the same cycle that the jump is in decode
i.e. bypassing values from later stages to decode

How Do We Do This In BlueSpec?

Eliminate read/write conflicts with ConfigReg
Keep rules from becoming unwieldy using rule
splitting and functions

Another look at the RTL

When do we have to stall?
When there’s an instruct in decode that wants to source
a register that a load in MEM or TAG CHECK writes to
We squash and stall when there’s a branch taken

Vector-Vector Add Example
vvadd:

LI $2, 100
LA $3, vect1
LA $4, vect2

loop:
LW $5, 0($3)
LW $6, 0($4)
ADDU $5, $5, $6
SW $5, 0($3)
ADDIU $3, $3, 4
SUBU $2, $2, 1
BNEZ $2, loop
ADDIU $4, $4, 4

done:
BEQ $0, $0, done
NOP

A look at the dynamic
instruction stream...

load hazard:
LW $6, 0($4)
ADDU $5, $5, $6

branch penalty:
SUBU $2, $2, 1
BNEZ $2, loop
ADDIU $4, $4, 4

--- BEQ $0, $0, done
LW $5, 0($3)

Load Hazard

Branch Penalty

Load Hazard

Cycle Time, Area, and IPC

Without early use of load data:
PR area: 632,471um2

PR timing: 3.68ns, 272MHz
IPC (vvadd): .47

With early use of load data:
PR area: 672,744um2

PR timing: 3.81ns, 263MHz
IPC (vvadd): .70

Branch Prediction

BP

Cycle Time, Area, and IPC

With early use of load data and predict backward taken,
forward not:

PR area: 638,645um2

PR timing: 3.35ns, 298MHz
IPC (vvadd): .75
IPC (qsort): .905

With early use of load data and 2-bit saturating counter
branch prediction (1024 2-bit entries):

PR area: 766,642um2

PR timing: 3.51ns, 285MHz
IPC (vvadd): .75
IPC (qsort): .906

IPC vs. IPS

median mult vvadd qsort
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IP
C

 (I
ns

tr
uc

tio
ns

 P
er

 C
yc

le
)

Benchmark

IPC Comparison

A: icache, dcache, full-bypassing, predict not taken

B: A + speculation on load hit in dcache

C: B + simple branch prediction

D: B + 2bit counter branch prediction

median mult vvadd qsort
0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

IP
S

(In
st

ru
ct

io
ns

 P
er

 S
ec

on
d)

Benchmark

IPS Comparison

A: icache, dcache, full-bypassing, predict not taken

B: A + speculation on load hit in dcache

C: B + simple branch prediction

D: B + 2bit counter branch prediction

Normalized Performance

median mult vvadd qsort
0.80

1.00

1.20

1.40

1.60

1.80

2.00

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Normalized Performance

A: icache, dcache, full-bypassing, predict not taken

B: A + speculation on load hit in dcache

C: B + simple branch prediction

D: B + 2bit counter branch prediction

Summary

Take away points:
It’s not IPC that matters in the end, it’s IPS
when the ISA is fixed in your comparison
To be fair, the benchmarks available didn’t
really push the branch prediction to illustrate
when the bht is useful. I’m looking into that.
IPC of .75-.90 on an in-order, single-issue
machine with a clock of ~300MHz in TSMC
.15um…in BlueSpec!

Questions?

BHT

RF

	High Performance SMIPS Processor
	Objectives:
	Objectives: 4 Design-Point Study
	Baseline RTL
	How Do We Do This In BlueSpec?
	How Do We Do This In BlueSpec?
	How Do We Do This In BlueSpec?
	Another look at the RTL
	Vector-Vector Add Example
	Load Hazard
	Branch Penalty
	Load Hazard
	Cycle Time, Area, and IPC
	Branch Prediction
	Cycle Time, Area, and IPC
	IPC vs. IPS
	Normalized Performance
	Summary
	Questions?

