
High Performance SMIPS Processor

Jonathan Eastep

6.884 Final Project Report

May 11, 2005

1 Introduction

1.1 Description

This project will focus on producing a high-performance, single-issue, in-order, pipelined SMIPS
processor. I will investigate branch prediction and use of load data before tag check as ways to
improve performance over a baseline implementation without increasing the cycle time.

1.2 Approach

I will start by building a baseline, single-issue, in-order, 6-stage pipeline with full-bypassing, a
16KB direct-mapped instruction cache with a line size of 16 bytes, a 32KB write back/write allo-
cate, direct-mapped data cache with a line size of 16 bytes, rudimentary predict-not-taken branch
prediction (to make it easier to add other forms of branch prediction later), and a “perfect” dual-
ported, unified L2 cache with a 6 cycle latency.

I will then build a powerful ISA simulator/debugger that can compare a trace from a simv run
against expected ISA simulation values and verify that the Bluespec model is functioning as ex-
pected. Additional features will include symbolic and numeric break-points, run-to and jump-to ca-
pabilities, on-the-fly modification of architectural state (including instruction memory), and dumps
of architectural state.

As a design space exploration, I will then build three additional machines that incorporate in-
cremental improvements over the baseline implementation. The four machines will compare as
follows:

• Machine A: the baseline implementation previously described.

• Machine B: add to Machine A the use of load data before data cache tag check.

• Machine C: add to Machine B a simple predict-backward-branch-taken, forward-not branch
prediction scheme.

• Machine D: add to Machine B a branch history table of 2-bit saturating counters for branch
prediction.

1

MAIN
MEMCPUMAIN

MEM

REPLY

REPLY REQUEST

REQUEST

Figure 1: SMIPS Processor UTL Description Diagram

2 Unit Transaction Level Description

It is useful for high-level understanding to examine what I am setting out to build from the Unit
Transaction Level (UTL). As depicted in Figure 1, the baseline machine (and the other three, in
fact) may be characterized as two UTL units: the memory unit (shown twice in the diagram for
convenience) and the CPU. Running between the units are several queues. Between the CPU and
the memory unit are instruction memory request and reply queues. On the other side, between the
CPU and the memory unit are data memory request and reply queues.

2.1 Processor State

The processor has four major state elements: the memory (instruction and data), the register file,
the program counter, and the exception program counter. The instruction and data memory are in
the UTL memory unit while the program counter, the exception program counter, and the register
file are in the CPU.

2.2 UTL Transactions

2.2.1 Memory Unit – CPU

The CPU may make a request for instruction memory by enqueuing the PC and some tag infor-
mation into the instruction memory request queue. The memory unit will dequeue the request,
read from its memory state, and place a reply in the instruction reply queue. The CPU will then
dequeue the reply to get an instruction, decode it, access the register file, and obtain any immediate
values from the instruction itself. It will then perform an operation and potentially store a result
as specified by the result of the instruction decode.

2.2.2 CPU – Memory Unit

The transactions between the CPU and the memory system involving data are similar to those
involving instruction memory. The CPU will calculate a memory address in its ALU and enqueue
a request in the data memory request queue. If the request was a load, the CPU will stall until it
receives a reply. If it was a store, the CPU continues execution. The memory system will dequeue

2

the request the CPU made, identify its type, and if it is a load request, will read from its memory
state and place a reply in the data memory reply queue. If the request was a store, the memory
system will store the data in its memory state. If the CPU made a load request, it will wake up
when it receives a reply from the memory system and complete the store into its register file state.

3 Test Strategy

The Bluespec model will make extensive use of the $write compiler directive to dump trace infor-
mation. The trace will include such things as what instructions are in the various pipe stages, what
their operands are, what the calculated results are, what address to load memory from or store
memory to, what values are being inputted to bypass muxes, what the PC for an instruction in a
given stage is, what value is being written to the register file, etc. Having a visible account of what
is going on in the pipeline should help for basic debugging.

For debugging the processor against complex programs, however, I will write an ISA simulator
to read in a trace from a run of the Bluespec model and test the trace against expected values
looking for disagreements. This should guard against erroneous calculations, instructions entering
commit that should have been squashed, errors in the dynamic instruction stream, etc. In addition
to this diffing capability, the simulator will support symbolic and numeric breakpoints, run-to and
jump-to capabilities, on-the-fly modification of architectural state (including instruction memory),
and flexible dumping. These features should prove useful in debugging any benchmark programs
that I write–if I have time to write extra benchmark programs, of course.

For benchmarking support in the hardware, I will create a module with methods for incrementing
or resetting benchmark counters and dumping counter state. I will place all benchmarking related
hardware in a module separate from the main processor so that it is easy to remove when doing
synthesis and place and route. Having detailed benchmarking information such as the number of
cycles the processor stalls for load hazards, for branch penalties, or for cache misses should help
significantly when trying to figure out what changes to make to the pipeline to increase processor
performance.

4 Micro-Architectural RTL Design

4.1 Baseline RTL

The baseline implementation consists of six stages: fetch, decode, execute, mem, tag check, and
write back (see Figure 2). There are paths from execute, mem, tag check, and write back to decode
where bypass muxing is performed. Since the SMIPS ISA always places the register specifiers for
instruction operands in the same bits of the instruction, decode can read from the register file
immediately without doing any decoding; decode exploits this fact.

Jump instructions resolve in decode and use the path from decode to fetch to communicate to
fetch that there needs to be a PC update. For branches, the processor evaluates the branch
condition and calculates the branch target in the execute stage. The path from execute back to

3

DECODE
TAG CHK

RF

FETCH EXEC WBMEM

REPLY

REQUEST

TAG
CHECK

RFI$ D$

PC

IQ

MAIN
MEM

MAIN
MEM

REQUEST

REPLY

Figure 2: 6 Stage SMIPS RTL Model

fetch communicates to fetch that there needs to be a PC update in the event that a branch is taken.

The baseline implementation handles instruction and data caching, and the cache access is split
into two stages: the cache SRAM access and the tag check. The fetch stage accesses the instruction
cache SRAM and decode does the tag check. Decode starts using instruction cache data before
the tag check completes, so decode will squash its result and the instruction to be placed in the
instruction queue by the fetch stage if the tag check indicates that there was an instruction cache
miss. On a miss, decode will issue a request to main memory for the line and stall. Fetch will
dequeue the reply when it is available, and execution will continue.

For load and store instructions, the processor calculates the memory address in the execute stage;
the processor uses the address in the mem stage to index into the data cache, and the next stage,
tag check, checks the tag, initiating a cache miss and a memory request for the data in the event
that the tags do not match. A data cache miss will stall the whole pipeline except for the portion of
fetch that handles an instruction cache miss. When a reply comes back from the memory system,
the tag check stage will update the data cache appropriately and execution will continue. If the
instruction was a store, the data cache will be updated in the write back stage. Stores are bypassed
to loads in the event that you have a load from the same address as a store that is still in the
pipeline. If it turns out that there are two consecutive load/store instructions in the pipeline that
access the same cache line and the first causes a miss, the data cache miss handler will patch up
the second load/store instruction with the appropriate data when it finishes servicing the miss.

4.2 Baseline Bluespec Implementation

In the previous section, we examined the baseline RTL of the processor. This section focuses on
the actual Bluespec implementation. The Bluespec represents each pipeline stage with a rule or
a set of explicitly mutually exclusive rules. For example, the fetch stage is broken up into a rule
that carries out the normal fetch operation of reading from the instruction cache SRAM and a rule
that executes when servicing an instruction cache miss. Figure 3 gives a diagram for one of the

4

DECODE
TAG CHK

RF

FETCH

D$ MISS
HANDLER

I$ MISS
HANDLER

BHT PCI$
EXEC MEM WB

REPLY

REQUEST

TAG
CHECK

RF D$

IQ
MAIN
MEM

MAIN
MEM

REQUEST

REPLY

Figure 3: Bluespec Model for Machine D

machines I implement as part of my design space exploration (more on this later) that illustrates
the mutually exclusive rules, and Figure 4 gives a rough idea of what the code looks like. The func-
tion serviceICacheMiss() contains combinational logic that evaluates whether or not the pipeline
is currently servicing an instruction cache miss. In general, for clarity and readability, I try to use
functions for the control logic that determines whether or not a rule will fire. The signals that
serviceICacheMiss() and serviceDCacheMiss() use to determine what boolean value to return are
set by the decode and tag check stages, respectively.

rule iCacheMissHandler(serviceICacheMiss());

…

endrule

rule fetch (!serviceICacheMiss() && !serviceDCacheMiss());

…

endrule

Figure 4: Control Logic With Functions

Examination of Figure 2 and Figure 3 should raise concern over how rules communicate in the same
cycle and execute without conflicts in Bluespec. The bypass paths and PC redirection associated
with jumps and branches require same-cycle communication; I accomplish this through the use of
RWire. And I make very liberal use of ConfigReg to eliminate the possibility of unexpected conflicts
between rules that share a resource such as a pipeline register.

5 Design Space Exploration

For my design space exploration, I build three additional machines that incorporate incremental
improvements over the baseline implementation. The four machines in all, again, compare as
follows:

• Machine A: the baseline implementation previously described.

5

• Machine B: add to Machine A the use of load data before data cache tag check.

• Machine C: add to Machine B a simple predict-backward-branch-taken, forward-not branch
prediction scheme.

• Machine D: add to Machine B a branch history table of 2-bit saturating counters for branch
prediction.

5.1 Minimizing Load Hazards

LW $6, 0($4)

ADDU $5, $5, $6

F

F

D E M T

D

W

E

Figure 5: Load Hazard

Machine B address the fact that if there is an instruction in decode that depends on the result
of an earlier load, the instruction in decode cannot reliably be allowed to progress until the load
passes tag check. As indicated in Figure 5, the worst case can create a two-cycle stall. In Machine
B, instead of paying the two-cycle stall, I build upon the fact that the data cache usually hits: we
can somewhat speculatively use a value from the data cache SRAM before we have checked the
tag. In our pipeline, this amounts to allowing bypassing from the mem stage to decode for loads.
Figure 6 illustrates with a pipeline diagram.

LW $6, 0($4)

ADDU $5, $5, $6

F

F

D E M

D

W

E

T

Figure 6: Load Hazard Reduced

In terms of additional bypass logic, there is little extra cost because the baseline already bypasses
from the mem stage if the instruction in the mem stage is not a load. If anything, decode gets a
little simpler because it now only has to look at the execute stage to see if there is a dependence
on load data to determine whether or not to stall; a dependence found on an instruction in a later
stage will not require a stall because the data will be available for bypass. The additional cost in
our pipeline is in the squash logic. Since we allow instructions to begin execution based on load
data that we will not know is valid until the cycle after it is potentially used, it may be necessary
to squash instructions if we get a data cache miss.

As depicted in Figure 7, the tag check stage will need to be able to examine the instructions in
previous stages to see what registers they sourced to see if any instructions need to be squashed.
Instructions will now consequently need to carry their source information with them down the pipe.
The baseline implementation already has logic in place to stall stages in the event of a data cache
miss, so we exploit that and do the squashing writes to the pipeline registers in the data cache miss
handler free of conflicts from the rules that would normally also be trying to write the pipeline

6

DECODE
TAG CHK

RF

FETCH EXEC WBMEM

REPLY

REQUEST

TAG
CHECK

RFI$ D$

PC

IQ

MAIN
MEM

MAIN
MEM

REQUEST

REPLY

Figure 7: Early Load Use Pipeline Modifications

registers. Any squashed instructions must be replayed, so the data cache miss handler changes the
PC to the PC of the earliest squashed instruction (the one closest to write back) if any instructions
are squashed at all.

After placement and route and a comparison of the numbers for Machine A (our baseline imple-
mentation) and Machine B (our baseline with early load use enhancement) we see in Figure 8 that
the area numbers and the timing are comparable. I should mention that the area numbers in these
charts are inaccurate, but consistently so; I did not synthesize or place and route the cache memo-
ries. That said, the thing to note is that the IPC for one of our more memory intensive benchmarks
improved considerably. I should mention that the improvement appears more dramatic than it is
in actuality because the baseline implementation does not actually bypass a load value until write
back even though it could obviously be done at the end of the tag check stage. This is a bug in
the baseline implementation. IPC numbers for other benchmarks will follow in a later figure, but
it looks like incorporating early use of load data is a design win nonetheless.

• Without early use of load data:

– PR area: 632,471um2

– PR timing: 3.68ns, 272MHz

– IPC (vvadd): .47

• With early use of load data:

– PR area: 672,744um2

– PR timing: 3.81ns, 263MHz

– IPC (vvadd): .70

Figure 8: PR Results for Early Load Use

7

5.2 Eliminating the Branch Penalty

The baseline implementation predicts that a branch is not taken, so in the case that that assump-
tion is correct, the baseline already saves a cycle over a naive approach that just stalls until a branch
resolves. When the assumption is wrong, however, the instruction in fetch must be squashed (see
Figure 9). Machines C and D try to improve performance by making a better guess as to whether
or not a branch is going to be taken, thereby reducing the number of cycles lost to squashing. They
do so by adopting different prediction policies.

F D E M T W

F D E M T W

BNEZ $2, loop

ADDIU $4, $4, 4 F D TE M W

BEQ $0, $0, done

LW $5, 0($3)

F

F D E M T W

SUBU $2, $2, 1

Figure 9: Branch Penalty

Machine C uses a simple but effective predict-backward-branches-taken, forward-not branch pre-
diction scheme. To incorporate this form of branch prediction, the pipeline need undergo very little
change. Jumps behave as they did in the baseline implementation since there is nothing to predict
about a jump; it is always taken. But for branches, in decode, when we have identified that we have
a branch, we look at the sign bit of the offset. If it is negative, we have a backward branch and we
predict that it is taken; if the sign bit is positive, we have a forward branch and we predict that
it is not taken. We communicate to fetch this information, but we also need to communicate the
PC to jump to if the sign bit is negative. We therefore need to have determined the branch target
before the instruction enters execute. This requires an additional adder in decode as you can see
in Figure 10 (the block for branch predictor logic is shown as the general case; the simple scheme
does not require any extra logic in fetch). If we predict that a branch will be taken and update the
PC accordingly but determine in the next cycle in execute that we were wrong in our prediction,
execute again redirects the instruction stream and squashes the instruction in fetch. The logic to
do this already exists in the baseline (when a branch is taken the instruction in fetch is squashed),
so there is no change to make there.

Machine D uses a 1024 entry branch history table of 2-bit saturating counters for the branch pre-
diction. To make this modification to the baseline implementation, we add a branch history table
SRAM in fetch. We read the SRAM in fetch then pass the counter value to decode (see Figure
10). Decode uses the branch prediction information to assert to fetch a branch taken or not and
passes the information along to execute. In execute, if the prediction was wrong, we correct it by
redirecting the PC in the usual way. But execute now has the additional responsibility of updating
the counter in the branch history table. If the prediction was to take and that was correct, the
counter is incremented, saturating at three of course. If the prediction was not to take and that
was correct, the counter is decremented, saturating at zero. If the prediction was to take and that
was wrong, the counter is decremented. If the prediction was not to take, and that was wrong, the

8

EXEC WBMEM

REPLY

REQUEST

TAG
CHECK

RFI$ D$

PC

IQ

MAIN
MEM

MAIN
MEM

REQUEST

REPLY

BP

Figure 10: Branch Prediction Pipeline Modifications

counter is incremented. The increments and decrements are done in the common-sense way one
would expect, and a counter value greater than or equal to two obviously correlates to a branch
predicted taken.

• With early use of load data and predict backward taken,
forward not:
– PR area: 638,645um2

– PR timing: 3.35ns, 298MHz

– IPC (vvadd): .75

– IPC (qsort): .905

• With early use of load data and 2-bit saturating counter
branch prediction (1024 2-bit entries):
– PR area: 766,642um2

– PR timing: 3.51ns, 285MHz

– IPC (vvadd): .75

– IPC (qsort): .906

Figure 11: PR Branch Prediction Comparison

As Figure 11 illustrates, place and route numbers show a significant increase in area associated
with adding the 1024 entry branch history table (again the cache SRAMs have not been synthe-
sized or placed and routed). These numbers are for machines that include logic for early use of load
data, but I should mention two things: first, I cleaned up the Bluespec code before acquiring the
placement and route numbers. This leads to a somewhat unfair comparison against the baseline
implementation. I would have liked to have left the Bluespec code in a state consistent with that
of the baseline implementation to make a fair comparison, but the compiler started running out of
memory; I had to clean up the code to get it to compile again. Second, I would presume that the
branch history table was synthesized and placed and routed rather inefficiently so the area increase
shown is more dramatic than it should be with a good memory generator.

9

median mult vvadd qsort

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IP
C

 (
In

s
tr

u
c

ti
o

n
s

 P
e

r
C

y
c

le
)

Benchmark

IPC Comparison

A: icache, dcache, full-bypassing, predict not taken

B: A + speculation on load hit in dcache

C: B + simple branch prediction

D: B + 2bit counter branch prediction

median mult vvadd qsort

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

IP
S

 (
In

s
tr

u
c

ti
o

n
s

 P
e

r
S

e
c

o
n

d
)

Benchmark

IPS Comparison

A: icache, dcache, full-bypassing, predict not taken

B: A + speculation on load hit in dcache

C: B + simple branch prediction

D: B + 2bit counter branch prediction

Figure 12: IPC and IPS Comparisons

It is interesting to note that the cycle time increased when I added the branch history table,
and did so without a noticeable increase in IPC for the benchmarks available. For the bench-
marks studied, therefore, we conclude that the branch history table implementation is actually
suboptimal. Nevertheless, having a smarter form of branch prediction–whether it be the simple
predict-backward-taken, forward-not or 2-bit saturating counters–seems to give a bit of a perfor-
mance boost over blindly predicting not taken. The boost is not very dramatic, of course, because
the processor front-end is rather short. Figure 12 gives a nice summary of the IPC and the Instruc-
tions Per Second (IPS) of the machines studied. IPS takes into consideration the place and route
timing data to give a better metric for performance than the IPC. And lastly, Figure 13 gives a
performance comparison of the various machines against the baseline implementation (whether or
not it is a fair fight). The normalized performance is the ratio of the IPS of a given machine to the
baseline’s IPS.

6 Conclusion

The first take-away point is that it is not IPC that really matters. As we saw with the simple
predict-backward-branch-taken, forward-not scheme versus the 2-bit saturating counter scheme,
while the 2-bit counters may have yielded slightly higher IPC, the cycle time increased, making
the 2-bit counters suboptimal for the benchmarks studied. The IPS is a better metric because it
incorporates placement and route timing information. The idea is well-known, I am certain, but
this experiment definitely highlights the point. I do feel like I owe it to the branch history table to

10

median mult vvadd qsort

0.80

1.00

1.20

1.40

1.60

1.80

2.00

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

Normalized Performance

A: icache, dcache, full-bypassing, predict not taken

B: A + speculation on load hit in dcache

C: B + simple branch prediction

D: B + 2bit counter branch prediction

Figure 13: Normalized Performance

run some benchmarks that exemplify when it proves the victor over the simpler scheme, but I did
not have time at the time of this writing.

The second point to make is that this design turned out to be pretty high performance as I hoped!
I have never built a machine before, obviously, but an IPC of .75-.90 on the reasonable benchmarks
supplied with a fairly realistic 6-cycle latency L2 model, seems pretty good considering the fact
that one cannot do any better than an IPC of 1 with a single-issue machine. I was also impressed
by how fast the design turned out. I was weary of the scheduler logic the Bluespec compiler was
going to produce, but was pleasantly surprised when, after cleaning up my Bluespec code, I pushed
my design through place and route, achieving a clock frequency of nearly 300MHz. It has certainly
been a fun, rewarding experience, and I feel like I have come to grasp intimately the basic principles
of computer architecture. That said, thank you to the 6.884 staff for their guidance and patience.

11

Figure 14: Final Layout

12

