Practical cache-based side channel
attacks with JavaScript

Jack Cook

[.ast time...

Replicating the original paper

e Shusterman et al. found that many websites exhibit
highly unique cache contention patterns

e While a website loads (in a separate tab/window), we
can repeatedly access values from memory and
measure how long it takes to retrieve them

e These can be visualized in a “memorygram”, where
darker areas indicate more cache evictions over time

e The uniqueness of these “memorygrams” can be
exploited -- a model trained on these can learn which
website is being accessed

A 110 M
I R L1 \ |
N [| | |
N W H\\HHHHNWHWHH|H | D A
I | e
N T o e e

| TR W
[N e B B
TN I ™™ = [[

Figure 3: Examples of memorygrams. Time progresses from
left to right, shade indicates the number of evictions. (Darker
shades correspond to more eviction.)

Preliminary Results

Most success with random forest models, which can be
translated into JavaScript after they're trained in Python

o Makes the results a bit cooler - the website you're on is displayed
as soon as you open the page

If you want to detect the user opening between a small
number of (around 4) websites, my work here is done

o 100% accuracy when distinguishing between basically any set of
4 websites that | tried

At 10 different websites, accuracy drops to 90%

Still collecting data to distinguish between 100 different
websites, which the original paper detected with 90%

accuracy

an.com

msnbc.com
NN e 1
[e |

nytimes.com

L1 T D e
[0 11 MR S i
| L L ANl ue il

L1 [Ramra il a|
R TP
[L L1 ISR | N
[LI0 BRI

[TIRRN BT
L | WA YRi
NN 1 ¥ sy
[Ny Siahy
L1 LI IUIE 0 | TR
(L1 URIY oI B
I

(1 Lo T
NN 1 (1 W)
L1 1 Tuiil el
UL TR Y
[1oy Seany

(NI ET
= L T SURTTN Dy
N I T T]
[T ; I
I nrme

L0 L IMTRUN Y o
U (NS
[IL00 Whih 1) a

apple.com
|10 BB o o
[LRI SBR[N

I EOTERRRTN 1 | Dnmn
| LL0o0 ST ASRIN RN T)
I 1T S E

[B0 HREOR i 11 il i
| VY o BN T
[i TT (R e T
FRICENE B
[muls bl sinu el b
| LuEpE R Ra | w5y o]
BEE T

| SR0i JEn i B B
R
[Lo T oy e

[DD 1 et e
[L STt 6

LI TR e T TR Tt
BT

R BEI01E TR

Preliminary Results (cont.)

The original paper made each trace 30 seconds long -- I've
found you can get almost all of the accuracy with about 2
seconds on a good Internet connection

an.com

msnbc.com
NN e 1
[e |

I e
[1] RISy
[T TR IRl
[T L0 il

I
L1 [Ramra il a|
R TP
[L L1 ISR | N
[LI BRI (R

nytimes.com

(T (O
L | WA YRi
NN 1 ¥ sy
[Ny Siahy
L1 LI IUIE 0 | TR
(L1 URIY oI B
I
L1 SRR) R

(1 Lo T
NN 1 (1 W)
L1 1 Tuiil el
AN 1 O
[1oy Seany
(R)

[__RUIBATIY i)
L0 TIEET Y V]
[| 1 TRy Mi
(T LT O 0T
L T SURTTN Dy
[T
L | (JBTE PRl

L0 L IMTRUN Y o
[TUTVR TR | 1Ty
[IL00 Whih 1) a

LRIEY T g

apple.com
|10 BB o o
[LRI SBR[N
I8 ERIEREEIDN i | D
[AUt T
RN TS AW

[B0 HREOR i 11 il i
| VY o BN T
[i TT (R e T

| SR0i JEn i B B
R
[Lo T oy e
| B 10

gl
{0 6
[TR 1 1 bl |
[TR TR T
N TNATIEEIETTE

[o

[_LE2111H v 0 s

IN) K O

[I 1119 e e
(1S 01 1

r:.lmrll e
|
| I

i 1
[Fis I G)

How it works

How to collect a website trace

e | found that trying to measure op/s
gave better results than measuring
cache contention

o Also makes my code much easier
to read

e Bestresults when this part was [REDACTED]

compiled to WASM

o Interestingly, fewer op/s from
WASM than JS, but results must
have been more reliable

Demo (kind of)

T Wi

B Chese Tha I Yes Y ety Peies

0@ & nery sviwrimmei e
© e

L e

. X @ e o

D e O e O oagnims O v D w M S— 0 e

Trewtrg Sodae

Jarsa Vs jwvestus
S VRopuw v e WL Ny o B (1 (Povertan

w furs by owibe L

Sesvta peats

- a d =

- T "

TN y - 1
% T atter lacing bt procitign & her univarsity’
L deparmment In 1938 Fitn Levi-MEatalini ° e raatd o an
et 2 A lalesexiony o Rer Do ort evt] atudiad the
prawth of aevse Shers n chickan er as. This v ImATI e Ty
work Led 1o ey ot erve Erawh fad
Tor which she was awarderd o Nolsel Prize n 19 ’ . Vb
. e
- . " A ——— |
’

Mo Crder Coybarpan 2077 vl pras oo NOW, The Acxt poser atian of

Takie v T huture dlongice

http://www.youtube.com/watch?v=a-wXXRXjItU

Results

How long should traces be?

Trace Length vs. Accuracy Trace Length vs. Accuracy
10
0.98
0.9 -
> > 0.96
B B
3 08 5
¥ ¥
< <
= < 094 -
2 S
877 B
s % 092
wvi v
8 0.6 1 L
o o
0.90
05 -
0 2 4 5 8 10 2 14 2 4 6 8 10 12 14

Tace Length (s) Tace Length (s)

How many websites can we classify?

e Results from this morning!

e Accuracy is usually around 97% when
classifying between the Alexa top 10

e When classifying between the Alexa top

50, accuracy drops to 74% (not amazing,

but remember: our random choice
baseline is 2%)

Classification Accuracy

100 A

20

Number of Websites vs. Accuracy

4 10
Number of Websites

Can we predict traces on new computers?

e Up until now, I've been collecting training and testing data on my own computer

o This gives great results, but is not representative of how this attack would probably be pulled off in the real world
e | collected testing data on my roommate’s Dell XPS 13 once, and the results were discouraging

o Can only speculate why this is -- got unlucky? Differences due to 0S? CPU?
e Whatif I could get data from a bunch of the same type of computer?

e Canlcollect data on one MacBook Pro, and make accurate predictions on another identical MacBook Pro?

I asked all my friends to collect data

Laptops
.
Snoopy Setup Instructions
Allen 13112020 2.GHz15 Catalina 86 1. Make sure you have npm installed
Angela 13 2017 23 GHzi5 High Sierra 87 « If nothing comes up when you type npm in Terminal, install it here:
https://www.npmjs.com/get-npm
Jennifer 13 2017 2.3GHzi5 Catalina 87 . .
2. Install selenium if you don't already have it
Anna 13 2018 2.3 GHzi5 Catalina 87 « Enter pip install selenium into your Terminal
Gwynnie 13 2017 2.3GHzi5 Catalina 87 « Then, open Chrome and go to chrome://version to check your Chrome version
N N = « Download ChromeDriver according to your Chrome version from
Katherine 13 2018 2.3GHzi5 Catalina 87 https://sites.google.com/a/chromium.org/chromedriver/downloads
Jamie 16 2019 23GHzi9 Catalina 87 « Move chromedriver into your path, e.g. sudo mv ~/Downloads/chromedriver
/usr/local/bin
Hassan 16 2019 2.3GHzi9 Big Sur 86 :
3. Clone the project
Julia 15 2016 2.6 GHzi7 Big Sur 87
aney 16 2019 2.6 GHz i7 Catalina 87 git clone https://github.com/jackcook/snoopy
Hannah 16 2019 2.6 GHzi7 Catalina 87 4. cd into the cloned directory and install dependencies
Kevin 15 2018 2.6 GHzi7 Catalina 87
: . . cd snoopy
Natalie 13 early 2015 2.7 GHzi5 Catalina 87 npm install
Eric 13 early 2015 2.7 GHz i5 High Sierra 87
5. Start the webserver
Soomin 13 2018 2.7 GHz i7 Catalina 87
Ethan 15 2017 29 GHzi7 Catalina 87 npm start
NYT 13 2017 3.1GHzi5 Catalina 87
6. Make sure you're ready to collect data:
Claire 13 2017 3.1GHzi5 Catalina 87 1. Plug your laptop into its charger
Dad 13 2017 3.5GHzi7 Catalina 87 2. Disable your screen saver: In System Preferences, go to Desktop & Screen

Saver and select "Start after: Never"

Katherine

Jamie

Hassan

Julia

Britney

Hannah

Kevin

Natalie

Eric

Soomin

Ethan

Claire

Dad

Cross-Computer Accuracies

55%

Cross-Computer Accuracies

Katherine

Angela

Cross-Computer Accuracies

Katherine

Jamie -EEIRE 3 6 0% 4%

amie

Hassan

74%:“
'73%

Cross-Computer Accuracies

Katherine

Jamie

1%

Cross-Computer Accuracies

Katherine

Jamie

1%

Predicting traces on new computers

Cross-Computer Accuracies

e Even with training data from just one computer, | can get - }
accuracies as high as 97% on other identical computers! "B

Jennifer {BEEEM [% 36% 30%

Gwynnie -JP2ES 59% 60% 45% 4% 38%

e Accuracy improved further when | combined data from . e R
multiple people with similar specs %

Jamie % 2 % 95% 85% [ExiA
o Anna and Katherine have identical computers, but training on % %
Anna’s data and testing on Katherine’s only gave 74% accuracy i Rk
Britney JEZ&8 % % 40% | 712% 68% 62%
o When I trained on all 4 computers with 2.3 GHz i5 processors, Haman EECH W% 7% ST % %
accuracy jumped to 87% Bl =% 2% 2% 2% don v [ST

Natalie

Challenges

e Same problem as before: is poor prediction accuracy due to bad data, or a bad model?
e It's hard to tell whether the way I'm making traces is the best one

o My only way to tell if something improved is to collect data for many hours

o This meant waking up, making a small adjustment to my trace collection, letting it run all day, making another
adjustment in the evening, and then running it overnight while | was asleep... and then doing this for weeks

o Probably wouldn't have been possible if | didn't have an old laptop with me

e Data s super noisy, and this is without any programs running in the background!

Progress!

e October 13: 87% accuracy between 4 websites
o First working demo! Cache-based traces and a TensorFlow.js model
e October 28: 100% accuracy between 4 websites, 88% accuracy between 10 websites
o Tweaked trace collection procedure, switched to random forest models
e November 10: 90% accuracy between 10 websites
o Switched from cache-based traces to recording operations per second
e December 3: 94% accuracy between 10 websites
o Fixed a bug with my selenium script, switched to extra trees classifier
e December 6: 97% accuracy between 10 websites
o Compiled trace collection code to WebAssembly
e December 9: 74% accuracy between 50 websites
e Future: Can probably do better?

Future Work

e Investigate browsers other than Chrome
e Keep trying to find better ways to make traces
e Collect noisy data (e.g. while other applications are open) and see how much accuracy drops

e Distinguishing between websites opening and nothing happening at all (so that we don’t have to hit the start
button to record a trace)

e Investigate differences due to network latency

e Make the 50-way classifier smaller...

o I] project — git-Ifs « git push — 80x23

[jackcook@PJacks-MacBook-Pro project % git commit -m "Add updated classifier"
[master d73bfdc] Add updated classifier
git push
3 files changed, 12397584 insertions(+), 363791 deletions(-)
rewrite classifier/memorygram.ipynb (91%)
jackcook@Jacks—MacBook-Pro project % git push
Enumerating objects: 13, done.
Counting objects: 100% (13/13), done.
Delta compression using up to 8 threads
Compressing objects: 1080% (6/6), done.
Writing objects: 100% (7/7), 27.58 MiB | 3.86 MiB/s, done.
Total 7 (delta 3), reused 1 (delta @)
remote: Resolving deltas: 100% (3/3), completed with 3 local objects.
remote: : GHOP1: Large files detected. You may want to try Git Large File S
torage - https://git-1fs.github.com.
remote: : Trace: 3685f1e524ba%904f914fabd2c641095b8022ce92beB8alsbBBalcf11889
c76b29
remote: : See http://git.io/iEPt8g for more information.
remote: : File classifier/classifier.js is 992.53 MB; this exceeds GitHub's
file size limit of 100.00 MB
To github.com:jackcook/6-888-project.git
master —> master (pre-receive hook declined)

) @ project — git-Ifs « git push — 80x23

[jackcook@PJacks-MacBook-Pro project % git commit -m "Add updated classifier"
[master d73bfdc] Add updated classifier
git push
3 files changed, 12397584 insertions(+), 363791 deletions(-)
rewrite classifier/memorygram.ipynb (91%)
jackcook@Jacks—MacBook-Pro project % git push
Enumerating objects: 13, done.
Counting objects: 100% (13/13), done.
Delta compression using up to 8 threads
Compressing objects: 100% (6/6), done.

remote: crror: File classifier/classifier.js is 992.53 MB; this exceeds GitHub's
file size limit of 100.00 MB

torage - https://git-1fs.github.com.
remote: : Trace: 3685f1e524ba%904f914fabd2c641095b8022ce92beBalsbBBalcf11889
c76b29
remote: : See http://git.io/iEPtBg for more information.
remote: : File classifier/classifier.js is 992.53 MB; this exceeds GitHub's
file size limit of 100.00 MB
To github.com:jackcook/6-888-project.git
master —> master (pre-receive hook declined)

Questions?

