
Jack Cook

Practical cache-based side channel 
attacks with JavaScript



Last time...



Replicating the original paper

● Shusterman et al. found that many websites exhibit 
highly unique cache contention patterns

● While a website loads (in a separate tab/window), we 
can repeatedly access values from memory and 
measure how long it takes to retrieve them

● These can be visualized in a “memorygram”, where 
darker areas indicate more cache evictions over time

● The uniqueness of these “memorygrams” can be 
exploited -- a model trained on these can learn which 
website is being accessed



● Most success with random forest models, which can be 
translated into JavaScript after they’re trained in Python

○ Makes the results a bit cooler -- the website you’re on is displayed 
as soon as you open the page

● If you want to detect the user opening between a small 
number of (around 4) websites, my work here is done

○ 100% accuracy when distinguishing between basically any set of 
4 websites that I tried

● At 10 different websites, accuracy drops to 90%

● Still collecting data to distinguish between 100 different 
websites, which the original paper detected with 90% 
accuracy

Preliminary Results



● The original paper made each trace 30 seconds long -- I’ve 
found you can get almost all of the accuracy with about 2 
seconds on a good Internet connection

Preliminary Results (cont.)



How it works



● I found that trying to measure op/s 
gave better results than measuring 
cache contention

○ Also makes my code much easier 
to read

● Best results when this part was 
compiled to WASM

○ Interestingly, fewer op/s from 
WASM than JS, but results must 
have been more reliable

How to collect a website trace

[REDACTED]



Demo (kind of)



http://www.youtube.com/watch?v=a-wXXRXjItU


Results



How long should traces be?



● Results from this morning!

● Accuracy is usually around 97% when 
classifying between the Alexa top 10

● When classifying between the Alexa top 
50, accuracy drops to 74% (not amazing, 
but remember: our random choice 
baseline is 2%)

How many websites can we classify?



● Up until now, I’ve been collecting training and testing data on my own computer

○ This gives great results, but is not representative of how this attack would probably be pulled off in the real world

● I collected testing data on my roommate’s Dell XPS 13 once, and the results were discouraging

○ Can only speculate why this is -- got unlucky? Differences due to OS? CPU?

● What if I could get data from a bunch of the same type of computer?

● Can I collect data on one MacBook Pro, and make accurate predictions on another identical MacBook Pro?

Can we predict traces on new computers?



I asked all my friends to collect data













Predicting traces on new computers

● Even with training data from just one computer, I can get 
accuracies as high as 97% on other identical computers!

● Accuracy improved further when I combined data from 
multiple people with similar specs

○ Anna and Katherine have identical computers, but training on 
Anna’s data and testing on Katherine’s only gave 74% accuracy

○ When I trained on all 4 computers with 2.3 GHz i5 processors, 
accuracy jumped to 87%



Challenges

● Same problem as before: is poor prediction accuracy due to bad data, or a bad model?

● It’s hard to tell whether the way I’m making traces is the best one

○ My only way to tell if something improved is to collect data for many hours

○ This meant waking up, making a small adjustment to my trace collection, letting it run all day, making another 
adjustment in the evening, and then running it overnight while I was asleep… and then doing this for weeks

○ Probably wouldn’t have been possible if I didn’t have an old laptop with me

● Data is super noisy, and this is without any programs running in the background!



Progress!

● October 13: 87% accuracy between 4 websites
○ First working demo! Cache-based traces and a TensorFlow.js model

● October 28: 100% accuracy between 4 websites, 88% accuracy between 10 websites
○ Tweaked trace collection procedure, switched to random forest models

● November 10: 90% accuracy between 10 websites
○ Switched from cache-based traces to recording operations per second

● December 3: 94% accuracy between 10 websites
○ Fixed a bug with my selenium script, switched to extra trees classifier

● December 6: 97% accuracy between 10 websites
○ Compiled trace collection code to WebAssembly

● December 9: 74% accuracy between 50 websites

● Future: Can probably do better?



● Investigate browsers other than Chrome

● Keep trying to find better ways to make traces

● Collect noisy data (e.g. while other applications are open) and see how much accuracy drops

● Distinguishing between websites opening and nothing happening at all (so that we don’t have to hit the start 
button to record a trace)

● Investigate differences due to network latency

● Make the 50-way classifier smaller...

Future Work







Questions?


