
Snoopy: Website Fingerprinting with JavaScript
Jack Cook — 6.888 final project

Introduction
Side channels attacks are an elementary type of attack that can be exploited on basically any
modern computer system. They rely on the fact that computers are required to share resources
in order to be practical and economically viable. This shared resource can be anything from
cache contention, to power usage, to network latency.

For this project, I originally took advantage of the cache contention side channel. I collected
traces in the form of cache contention over time, known as a “memorygram,” and opened new
tabs in my browser while these traces were being collected. After training a model on a large
collection of memorygrams, I was able to predict new tabs that people opened in their browsers.
When distinguishing between 10 websites, we were able to reach 97% accuracy, and when
distinguishing between 100 websites, we reached 75% accuracy. This work demonstrates why
side channel attacks are practical to exploit from JavaScript, and how we can defend against
them.

Background
This work is based in large part on findings from Shusterman et al., when they first
demonstrated how this type of attack was possible. After collecting cache-contention-based
memorygrams, the authors used MATLAB’s classification learner to train a model that
accurately predicts websites opened in new windows. While the attacks are impressive (and
scary), the paper left me with several unanswered questions. The authors demonstrated that
these attacks worked with very high accuracy, but in my mind, did not prove the practicality of
this attack.

For example, the authors claimed that “If the target hardware configuration is known
beforehand, [...] the attacker can customize the parameters of the JavaScript attack code to
match the target PC’s parameters.” This implies that they believe their attack would carry over
well to computers that were not present in the training data. However, the authors neglected to
prove this.

Shusterman et al. also made assumptions that significantly limited the practicality of this attack.
For example, each trace collected in their paper is 30 seconds long. If this attack were to be
embedded in a webpage, many users will likely close the page before 30 seconds is up, and
before opening any new tabs. The authors also didn’t experiment with added noise, and
whether the results held up when other programs were running on the user’s computer in the
background. For my projects, I wanted to push this type of attack to its limits. How practical is it
to pull this attack off?



Overview and Evaluation

1. Replicate Shusterman et al.

I spent much of the first half of this project
replicating the original paper by Shusterman et al.
I wouldn’t be able to experiment with my
questions and ideas if I didn’t have a working
version of this attack, and the authors didn’t
publish their source code. After a few days, I had
my first working implementation of the attack. I
wrote a Selenium script that would start data
collection, open a new page, stop data collection,
close the new page, and save the resulting
memorygram. I collected all of my data in
Chrome, and I was careful to match any details
provided by the Shusterman et al. paper. For
example, the size of the array that my
JavaScript program allocated was also
20MB,

At the start, I was only distinguishing
between four websites: cnn.com,
msnbc.com, nytimes.com, and apple.com. I picked these because I figured CNN, MSNBC, and
NYTimes are data-heavy websites that likely load multiple assets in a unique way, while Apple
likely loaded fewer assets and completed loading quicker. I wanted to prove that this
uniqueness would show up in a collection of memorygrams.

In the figure above, you can see that this is the case. Apple loads relatively few resources, and
we can see that the cache frees up very quickly after a brief period of contention at the
beginning. NYTimes loads a large asset around 10 seconds after the page loads, and CNN
exhibits high cache contention the entire time that the page is open. The results are so apparent
here that these websites could be classified correctly by simple inspection. It took longer than I
expected to tune my parameters correctly, but I ultimately reached 100% accuracy through my
4-way classification problem by using Random Forest models with the scikit-learn Python
package. When I expanded my dataset to include 10 different websites, my accuracy dropped to
90%, still well above the random-choice baseline of 10%. After further tuning my attack by
adding new worker threads, my accuracy eventually reached 95%, at which point I moved on to
other parts of my project.



2. Trace collection methodologies

I spent a large portion of this project investigating different ways to collect a memorygram. It
quickly became clear to me that improving this step was paramount when it came to determining
my attack’s highest possible classification accuracy.

I started my project with a cache-contention-based attack such as the one employed by
Shusterman et al. Their program allocated a 20MB array in memory and iterated over it in a
variety of patterns that targeted various cache set-counts and associativities. After tweaking my
code for a while, I decided to try switching to something simpler.

[REDACTED]

Algorithm for recording a single memorygram. 15000 is the length of each trace in
milliseconds, and 5 is the duration of collection for each individual datapoint.

It turns out that this timing-based attack was not only simpler, but it also significantly increased
my classification accuracy. After switching from my best cache-contention-based attack to my
best timing-based attack, classification accuracy improved by about 4%. For this reason, I stuck
with this timing attack for the remainder of my project.

3. Introducing WebAssembly

One question that was on my mind as I was reading the Shusterman et al. paper was whether
their attack’s accuracy could be improved if they compiled their code to WebAssembly. After all,
the official WebAssembly homepage boasts how WebAssembly can run at “native speed,” and
many companies have seen success with WebAssembly when it comes to increasing speed.
For our attack, the increased speed offered by WebAssembly could translate to making more
memory accesses per second, resulting in more precise memorygrams.

I ported my memorygram collection code (pseudocode in section 2), from JavaScript to Go,
which I then compiled to WebAssembly using the TinyGo compiler. All models trained on the
WebAssembly version of our code were about 3% more accurate than the comparable
JavaScript-based versions. This is what allowed me to reach my final accuracy of 97% for
10-way classification.



Evaluation and Results

1. Increasing number of websites

Due to time constraints, I spent much of my time improving my 10-way classification accuracy,
which is a relatively small number of websites compared to the 100-way classification explored
by Shusterman et al. This allowed me to collect reasonably large training datasets within just a
few hours. Near the end of the project, I left my laptop to collect a 50-website dataset over the
course of 2 full days.

After training and evaluating on this dataset, my model was able to achieve 74.8% accuracy,
which is competitive with the 72.5% 100-way classification accuracy achieved on macOS by
Shusterman et al. More data collection needs to be done to see whether my attack holds up
during 100-way classification.

2. Evaluating on novel computers

To me, the most interesting question was whether this attack would work on novel computers.
Could we collect training data on one computer, and evaluation data on a brand new computer,
while maintaining high classification accuracy? I ended up spending a large portion of my
project answering this question.

After cleaning up my code and making it easy to install and run on new computers, I sent
instructions to many of my MacBook-owning friends, hoping that at least a few of them would
have computers with the exact same specifications. Each laptop collected data for at least six
consecutive hours on the top 10 websites ranked by U.S. visitors. We can see the results of this
data collection below.



Each cell depicts the accuracy of a model that was trained by the row-wise computer, and evaluated on
the column-wise computer. All 18 computers are post-2015 MacBook Pros.

Angela, Jennifer and Gwynnie (group A) have 2017 MBPs with 2.3 GHz i5 processors. Anna and
Katherine (group B) have 2018 MBPs with 2.3 GHz i5 processors. Jamie and Hassan (group C) have

2018 MBPs with 2.3 GHz i9 processors. Britney and Hannah (group D) have 2019 MBPs with 2.6 GHz i7
processors. Natalie and Eric (group E) have early 2015 MBPs with 2.7 GHz i5 processors.

In the diagram above, we can see that groups A-E all exhibit increased accuracy when training
and evaluating within the same group, rather than outside of their group. Interestingly, some
models exhibited high accuracy on models that had almost nothing in common with the
computer they were trained on. We can see this most clearly in the correlation between Jamie’s
laptop, a 2019 16” MacBook Pro with an i9 @ 2.3 GHz processor, and Ethan’s laptop, a 2017
15” MacBook Pro with an i7 @ 2.9 GHz processor. The reason for this correlation is unclear,
and more analysis needs to be done to identify what causes a model to carry over well between
different computers.

However, the accuracy is almost always lower than when training and evaluation was done on
the same computer. For this reason, I believe Shusterman et al. are misleading to ignore this



step of data collection and analysis. This step is crucial to proving that this attack is practical. In
the real world, we will likely not have unfiltered access to the target computer for several hours
in order to collect data.

3. Analyzing trace length

The final question I wanted to answer from
the Shusterman et al. paper was how trace
length affects accuracy. Requiring that traces
are 30 seconds long makes this attack
inherently less practical. In the real world,
users click open and close pages within a
matter of seconds. A recent analysis by
Amazon showed that every 100ms of latency
ultimately cost 1% in sales, which proves
that many users are extremely quick to close
webpages. A practical version of this attack
would need shorter traces.

After reaching the final version of my attack, I went back and repeated my model training
procedure, except I only included the first seconds of each trace. In the graph above, we can𝑛
see that this attack holds up very well to shorter trace lengths, and after awhile, classification
accuracy plateaus. After just 250 milliseconds, we still achieve 50% accuracy, well above our
10-way classification baseline of 10%. After 1 second, we reach 90% accuracy, and after 4
seconds, we reach 96% accuracy. The fact that we’re able to retain most of our classification
accuracy with trace lengths that mirror likely real-world user behavior significantly increases the
practicality of this attack.

Future Work
There are multiple directions that this work could be taken in the future. I believe more research
needs to be done before we can definitively say whether this attack should be taken seriously.

1. Collecting data with different browsers
For simplicity, I collected all of my data in Chrome, because I found that Chrome offered
higher-precision timers than Firefox and Safari, which I believed would correlate with higher
accuracy. Tor tries to blunt these types of attacks by offering timers with an extremely low
precision of 100ms, however Shusterman et al. were able to work around this to achieve
accuracies that were still well above chance.

2. Collecting noisy data
I would have liked to collect data that was more noisy. During all of my data collection periods,
and in the instructions I sent to my friends, I closed all programs before running the Selenium
script. This inherently reduces the attack’s practicality because most users browsing the web will
have other programs open, such as a music player, an email client, or maybe even other browser
tabs.



3. Further investigating memorygram collection methods
There is no way to prove that my memorygram collection procedure, or any other memorygram
collection procedure, is the best one. A new procedure with different ideas or different parameters
could prove to collect better data about activity that is occurring on the same machine. During
class, Thomas suggested combining my timing-based procedure with cache collection data,
which was an idea I hadn’t considered before. A better method could likely boost classification
accuracy by several points.

4. Building defenses against this attack
I would have liked to try to build a browser extension that defends against this type of attack, or at
least considered what it would take to make this attack infeasible. One idea I had was adding
random noise to timers offered in the browser, so that my code can’t count on the fact that each
datapoint in a memorygram is collected in exactly the same amount of time. Unfortunately, I didn’t
have time for this one, but it is important to think about how to make this attack less dangerous.

5. Investigating better models
For this project, I stuck with Random Forest models and Extra Trees models from scikit-learn,
because they gave me the best accuracy. However, Shusterman et al. decided to exclusively use
CNN- and LSTM-based models. No matter what I tried, I couldn’t get these types of models to
work, but I’m sure more time could have allowed for the use of the models. And perhaps they
would have improved my accuracy.

Conclusions
After having completed this project, I’m glad to have pulled it off, and I’m glad I was able to learn
so much along the way. At the start of this semester, I had never heard of a side channel attack,
and I might not have believed that microarchitectural attacks could be pulled off from JavaScript.
At a minimum, it helps me understand Richard Stallman’s anti-JavaScript philosophy a little bit
more than I previously did. Security vulnerabilities can really come from anywhere.

I additionally believe I achieved most of my goals when it comes to practicality. I still think that
the Shusterman et al. paper makes many unrealistic assumptions when it comes to modeling
real-world user behavior, and while this attack still isn’t completely practical in its current form
due to the noisy data limitation, I’ve removed some limitations around duration, improved
accuracy with WebAssembly, and demonstrated that the authors’ original assumption that this
would carry over to new computers is realistic.

Appendix

1. Intuitions with side-channel attacks

One lesson I learned during this project is that my intuitions will not always match what will
achieve the best results when it comes to side channel attacks. For example, I decided that
Chrome would be my browser of choice for data collection during this attack because I believed
higher-precision timers would give me better accuracy. However, while doing this write-up and



reading over the Shusterman et al. paper again, I realized that the authors actually achieved
their best accuracies in Firefox. It’s not immediately clear to me why this is.

Another instance of this is in how I ended up switching to a timing-based attack. It’s not
immediately clear to me why a timing-based attack would outperform a cache contention-based
attack, as differently websites load highly distinctive and unique assets while loading, which
would theoretically affect the cache in predictable ways. However, I guess the same can be said
for power consumption. The results don’t lie.

2. Source code

If you’re interested in exploring my project’s code, you can check it out (mostly undocumented
right now) at [REDACTED]. The classifier directory contains the Jupyter notebook I used to
train my model, wasm contains the memorygram collection code and the compiled .wasm file,
src contains the code for the data collection website, and record_data.py is used to perform
data collection. The setup instructions I sent to my friends can be found here:
https://www.notion.so/jackcook/Snoopy-Setup-Instructions-b8e2e3c14c6145d8b9186ece609568
ad

3. Final note

I just wanted to say I’ve really enjoyed 6.888 this semester. I think I was the youngest and least
experienced student in the class, and while I had a strong software background coming in, I had
very little hardware background beyond 6.004. Despite this, I now feel like I have a high-level
understanding of several concepts in hardware security, and this class has definitely made me
reconsider what systems I consider to be secure or insecure. I hope our paths cross again in the
future!

https://www.notion.so/jackcook/Snoopy-Setup-Instructions-b8e2e3c14c6145d8b9186ece609568ad
https://www.notion.so/jackcook/Snoopy-Setup-Instructions-b8e2e3c14c6145d8b9186ece609568ad

