
Lab 1: Cache Side Channels 6.888 Secure Hardware Design – Spring 2022

Due date: Wednesday March 2nd 11:59:59 PM ET

Points: This lab is worth 14 points (out of 100 points in 6.888).

Collaboration policy: Our full Academic Honesty policy can be found on the Course Information page
of our website. As a reminder, all 6.888 labs should be completed individually. You may discuss the
lab at a high level with a classmate, but you may not work on code together or share any of your code.

Getting started: Log in to our lab machine unicorn.csail.mit.edu. To connect via ssh, run:

ssh YourKerberosName@unicorn.csail.mit.edu

We are using git for assignment version management and submission for this lab. Instructions for setting
up git can be found on the course website.

First time setup: Once you’ve logged into Unicorn, you will need to set up your Git repo. This only needs
to be done once this semester (before starting to work on lab 1). Once you’ve completed the instructions on
the course website under "First time setup," you can pull the lab 1 code with the following:

git fetch lab_release

git merge lab_release/lab1 --allow-unrelated-histories -m "Merging lab code"

Introduction
This lab explores the practical exploitation of hardware side channels. In the first part, you will sample the
access latency of different cache levels in the memory subsystem. The latency numbers collected in part 1
will be helpful in creating a cache side/covert-channel. In the second part, Dead Drop, you will see how
these side channels can allow you to bypass process isolation guarantees by creating a covert channel to send
information between two processes that are unable to communicate using traditional means. In the third
part, Capture the Flag, you will fine-tune the concepts you used in Dead Drop to steal a secret from a victim
program by simply observing the cache.

The lab will help you to leverage the theory of the attacks that you learnt from the class to build practical
ones that work on real processors. There are several challenges to tackle that we have not covered in the
class. The discussion questions and hints below will help to address these challenges.

To get started with the lab, see the README in your Github repo. Instructions for accessing git are at:

http://csg.csail.mit.edu/6.888Yan/labs/

Please do not use VS Code to connect to the server. VS Code’s remote ssh plugin introduces a
large degree of noise, and may cause your attack to fail.

Assembly, C/C++, Python. In most labs for this course, including Lab 1, you will be asked to write
programs in C/C++. C/C++ are low-level languages that give you more control over the hardware than high
level languages do. The programs written in those languages can be compiled to machine code and directly
execute on the hardware without other abstraction layers. When working on microarchitectural attacks,
having a high degree of control over the exact instructions being executed is essentially a requirement. If
you are not familiar with C/C++, our first recitation goes over the basics. You can also get yourself familiar
with the syntax of C/C++ using the materials linked on the course website labs page.

In this lab, we will not ask you to write assembly code. Instead, we use inline assembly to wrap assembly
code as C/C++ functions which you can use directly.

We use Python to automate the process of launching attacks and plotting results.

1

http://csg.csail.mit.edu/6.888Yan/
http://csg.csail.mit.edu/6.888Yan/labs/
http://csg.csail.mit.edu/6.888Yan/labs/
http://csg.csail.mit.edu/6.888Yan/labs/
http://csg.csail.mit.edu/6.888Yan/labs/


Lab 1: Cache Side Channels 6.888 Secure Hardware Design – Spring 2022

1 Timing Analysis (20%)
This part will guide you through some common techniques and instructions that we can use to measure
latency on processors, which is a prerequisite for timing covert/side channels.

1.1 Setting Up Your Environment
You will be given SSH access to a lab machine to run your code on and you will be assigned two CPUs on
this machine. After logging into lab machine and cloning your repo, you will need to modify the SENDER_CPU
and RECEIVER_CPU variables in the cpu.mk file to your assigned CPUs. IMPORTANT: You must set
SENDER_CPU and RECEIVER_CPU to your assigned values before running code for any portion of this
lab.

Exercise 1: Modify the SENDER_CPU and RECEIVER_CPU variables in the cpu.mk to your assigned CPUs.

Once you have configured these variables, you can remove the $error line from cpu.mk as well.

1.2 Determine the Machine Architecture
Before exploiting any hardware side channels, you must first understand the machine architecture. There
are a few commands that can help with this on Linux.

• lscpu: provides information on the type of processor and some summary information about the archi-
tecture in the machine.

• less /proc/cpuinfo: provides detailed information about each logical processor in the machine.

• getconf -a | grep CACHE: displays the system configurations related to the cache. This will provide
detailed information about how the cache is structured. The numbers that are reported using this
command generally use Byte (B) as the unit.

In addition, WikiChip provides a lot of information specific to each processor and architecture. You
can find detailed architecture description of lab machine in Cascade Lake architecture, which additionally
provides the raw latency number for accessing different levels of caches.

Discussion Question 1: Caches in modern processors are generally set-associative. Use the commands
above and what you learned in 6.004 to fill in the blanks in the following table. The L1 line size has been
filled in for you. Record the answers in 1.2.txt. In case you need them, review resources regarding
caching are located on the course website.

Hint: You should be able to directly obtain the information for the first 3 columns using commands
above and you will need to derive the number of sets from the previous columns. Raw latency can be
obtained from the WikiChip document.

Cache Line Size Total Size Number of Ways (Associativity) Number of Sets Raw Latency
L1 64 Bytes
L2
L3

Table 1: Cache Parameters
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1.3 Warm-up with C Syntax
Before we actually get started with timing measurements, you need to familiarize yourself with C syntax and
several useful x86 instructions. This section gives a brief explanation for the code in utility.h and main.c

Please read the code in the file utility.h and understand the the following functions. In the comments,
you can find detailed explanations of the x86 instructions used in each function.

• rdtscp and rdtscp64: Read the current timestamp counter of the processor.

• lfence: Perform a serializing operation.

• measure_one_block_access_time: Measure the latency of performing one memory access to a given
address.

• clflush: Flush a given address from the cache- later accesses to the address will load from DRAM.

• print_results and print_results_for_python: print the collected latency data in different formats.

An extremely powerful tool used in C programs to interact with memory is the pointer. Here are a few
C methods to manipulate memory using pointers.

• malloc(size): Allocate size bytes of uninitialized storage on the heap. On success, malloc returns
a pointer to the beginning of some newly allocated memory. To avoid a memory leak, the returned
pointer must be deallocated with free(). On failure, malloc returns a null pointer (denoted with the
keyword NULL). You should always check to ensure the returned pointer is not equal to NULL!

• free(ptr): Returns the space previously allocated by malloc(). If ptr is a null pointer, the function
does nothing. Once you have free’d some memory, you should ensure never to use it again, otherwise
you will introduce a Use after Free (UaF) vulnerability!

• &var: Returns the memory address of var, also known as a pointer to var. On our 64-bit lab machine,
addresses are 64-bit integers. The & operator is called the "address-of" operator.

• *ptr: Dereference the pointer ptr. This allows you to read or write the data pointed to by ptr just as
you would any other variable.

• ptr[index]: Treat ptr as an array and retrieve the entry at index index. This is the same as
*(ptr+index × sizeof(type)). If ptr points to an 8-bit character, then sizeof(type) is 1 byte.
Remember that arrays in C start at 0.

• y = (type) x: change the type of variable x and assign it to variable y. It is common to convert an
64-bit value back-and-forth between the integer and pointer format. For example,

1 uint64_t x = 0x12345678; //x is a 64-bit unsigned integer
2 uint8_t *y = (uint8_t *) x; // cast x to a pointer (treat it as an address)
3 uint8_t z = *y; // access the data pointed to by pointer y.
4 // z now contains the data from address 0x12345678

1.4 Timing a Memory Access
In this part, you will time and report the latency of accessing a cache line that locates in the (a) L1 cache,
(b) L2 cache, (c) L3 cache or (d) the DRAM. We will guide you through this process through the following
exercise. At a high level, your code should perform the following:

1. Put a cache line into a given structure (L1, L2, L3 cache, or DRAM).

2. Measure the access latency using measure_one_block_access_time.

To help you to make sure that you are on the right track, we have provided a reference implementation
in the executable file reference. To see the reference output, use command make run-reference.

3



Lab 1: Cache Side Channels 6.888 Secure Hardware Design – Spring 2022

Measure L1 latency. We have provided example code in main.c to measure L1 latency. The idea is to
(1) perform a load operation on a target address to bring the corresponding cache line into the L1 cache, and
then (2) measure the access latency by counting the number of cycles it takes to re-access the same target
address. You can compile the starter code using the command make, and then run it with make run.

Exercise 2: Compile and run the starter code and observe the L1 latency measurements.

Measure DRAM latency. You will now need to figure out how to measure the DRAM access latency.
Place an address into DRAM and then use measure_one_block_access_time to measure its latency. Hint:
You can leverage the instruction clflush to achieve this goal.

Exercise 3: Fill in the code in main.c to populate the array dram_latency and report the medium
DRAM latency. Compare your results with the reference implementation.

Measure L2 and L3 latency. Next, you should move on to measure L2 and L3 cache latency. Similarly,
you need to put a target address to the L2 cache and L3 cache. Simply accessing the target address will
make the address reside in the L1 cache. Therefore, you need to access other addresses to evict the target
address from the L1 cache.

Hint: You should be careful with the the mismatch of access granularities. The smallest operational
unit in cache is the cache line size. However, a uint64_t value is 64 bits, i.e., 8 Bytes, which is smaller than
the cache line. Accessing two integers that fall into the same line (more precisely, fall within the same cache
line size aligned region of memory) will result in a cache hit, and won’t cause an eviction.

Discussion Question 2: How many cache lines do you need to access to fill up the entire L2 cache
and L3 cache respectively? You can derive the answer from Table 1. Put your answer in 1.4.txt.

Hint: You may not be able to reliably evict the target address due to noise. This is common due to the
following reasons. (1) Recall that the cache is set-associative, sometimes you may not get enough addresses
that are mapped to the same cache set as the target address. It is possible because the cache mapping
uses physical address, while the software uses virtual address. (2) The cache replacement policy in modern
processors is more advanced than what we learnt from the class. It may smartly decide to keep the target
address instead of evicting it.

To bypass the two scenarios above, you could try (1) use a buffer at the size that is 1.5× of your calculated
size; (2) access the eviction buffer multiple times.

Exercise 4: Fill in the code in main.c to populate the array l2_latency and array l3_latency. Report
the medium L2 and L3 latency. Compare your results with the reference implementation.

1.5 Visualize Latency Distribution
Micro-architectural side channels are notoriously noisy. The noise comes from various sources and it is
unlikely to come up with a complete list. Fortunately, there exist several effective methods to combat noise,
and the most commonly used method is repetition. Specifically, the attacker can repeat the measurement
many times to collect a large amount of data and use statistical methods to accurately decode the secret as
long as the noise is not substantial. Such statistical methods can range from simply computing the mean of
the collected data, signal processing techniques to even machine learning methods.

We have provided two Python scripts run.py and graph.py to show you an example of how to automat-
ically launch multiple measurements and visualize these measurements.

run.py - A python script that will generate 100 runs from the reference binary. It will create a folder (if
one doesn’t already exist) called data, and it will store all the generated samples there in json format. The
script will overwrite the folder if it already exists.

graph.py - A python script that will plot the histogram of the samples collected from run.py. It will
read the data from the folder data and generate a pdf file of the histogram in a folder called graph.

There exist several knobs- feel free to adjust them however you want.
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• The macro SAMPLES in utility.h is the number of samples to collect for each run.
• The variable executable_filename in run.py is the name of the binary file to be launched. You can

change change this variable to “[’make’, ’run’]” to run your own code. Note that your code must
print samples using the print_results_for_python function.

• The variable num_runs in run.py is the number of times to run the binary file.
Note that the Cascace Lake architecture has very similar L1 and L2 latency; hence it may be difficult to

distinguish L1 vs L2. However, the {L1, L2} vs L3 vs DRAM must be clearly distinguishable!

Exercise 5: Generate the histogram pdf file using your binary code and compare it with the reference
implementation. Include the histogram of the reference implementation and your implementation in
your solutions.pdf document. See the submission guidelines in Section 1.6.

Discussion Question 3: Based on the generated histogram, report two thresholds, one to distinguish
between L2 and L3 latency and the other to distinguish between L3 and DRAM latency. Put your
answer in 1.5.txt.

1.6 Submission and Grading
There is no checkoff for Part 1. This part is graded manually based on the following submitted materials:
code, the named question text files, and a pdf file.

• Code. You will need to submit code to your assigned Github repository. Your code should be able to
reproduce the histogram you submitted. Due to noise, we will run your code multiple times (around 3
times) and grade based on the best results. You should feel comfortable to submit your code as long
as it can generate the expected results most of the time.

• The contents of 1.2.txt, 1.4.txt, and 1.5.txt.
• A pdf named as solutions.pdf at the root of the lab 1 directory. You will create a pdf file to provide

your histograms from part 1.5. Please name the pdf file as solutions.pdf and place it in the lab1
main folder. Note that this pdf file will also be used by you to provide answers for the questions in
Part 2 and Part 3.

2 Dead Drop: An Evil Chat Client (50%)
With all the preparation in Part 1, now you are ready to build Dead Drop: an evil chat client that can send
messages between two processes running on the same machine. To make your life easier, you only need the
ability to send integers from 0-255 (inclusive).

Unlike Part 1, in Part 2 you will have a lot of freedom in how you perform your attack. There are only
two rules for the evil chat client.

1. The sender and receiver must be different processes.

2. The sender and receiver may only use syscalls and shared library functions directly accessible from the
provided util.h except system(). Both the sender and receiver may use any x86 instruction except
for clflush.

Hardware covert channel: With Dead Drop, you must implement cross-process communication using
hardware covert channels. Suppose the sender and receiver run on the same physical machine at the same
time. Processes on this machine share hardware resources (including caches, DRAM, processor pipelines,
etc). If the sender process uses a hardware resource, it creates contention with other processes trying to use
that same resource. Coupled with a mechanism to measure contention (such as a timer), this can be turned
into a reliable way to send information from process to process that violates software-level process isolation.

We suggest you build a Prime+Probe covert channel targeting the L2 cache. The reason is that (1)
according to the analysis in Part 1, we have already observed that L2 and L3 latency can be clearly distin-
guished; (2) The L2 cache is private to each core, and thus is relatively easier to exploit compared to the L3
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cache which is shared across cores. You are also welcome to be creative to try other types of covert channels,
which we do not recommend for starters.

Allowed code: The sender and receiver may only use syscalls and the functions accessible from the
provided util.h except for system(). There is no way to set up a shared address space between the sender
and receiver, nor is there a way to call any obviously-useful-for-chat functions such as Unix sockets.

In addition, you may use any x86 instruction in your final submission except for clflush. The point of
limiting your code usage is not to force you to re-implement convenience functions. Because we are unable
to create a shared memory space between the two processes, traditional Flush+Reload or Evict+Reload
attacks cannot be used. Instead, we can explore the possibility of using a Prime+Probe style attack.

Besides, if you would like to use some convenience code that stays within the spirit of the lab, please
contact the course staff. Obviously, you may not use pre-packaged code from online for building covert
channels (e.g. mastik).

Expected behavior: The Dead Drop client should behave in the following way. In two different terminals
running on the same machine, you should be able to run the following commands:

1: Terminal B: $ make run_receiver
2: Terminal B: Please press enter.

3: Terminal A: $ make run_sender
4: Terminal A: Please type a message.

5: Terminal B: $
6: Terminal B: Receiver now listening.

7: Terminal A: $ 47

8: Terminal B: 47

In other words, in lines 1 and 2, you start the receiver process in a terminal, and it prompts you to press
enter to start listening for messages. Until you press enter, the receiver is not expected to echo messages
from the sender. In lines 3 and 4, you start the sender in another terminal. Lines 5 and 6 are you pressing
Enter to start the receiver process. It should now be ready to receive messages. In line 7, you type a message
and hit enter on the sender side. Line 8 shows the same message appearing on the receiver side.

2.1 Getting Started
The files included for the Dead Drop portion of the lab are under Part2-DeadDrop.

• sender.c, receiver.c - template code for your sender and receiver respectively

• util.h, util.c - utility functions and library imports you are permitted to use (except for clflush)

Similar to Part 1, you need to compile your code using command make. To test your chat client, you
can open up two terminals on the lab machine and run make run_sender in one and make run_receiver in
the other to demo your exploit. With these two commands, your processes will be running on two specific
CPUs, SENDER_CPU and RECEIVER_CPU. You should have set the two variables to your assigned value. This is
done to simplify the conditions for this lab.

The two CPUs you have been assigned are a pair of SMT (aka Hyperthreading) thread contexts which
run on the same physical core and share all the hardware resources on that core such as private L1 and L2
caches. Your implementation will only need to work on your assigned cores. This is because a successful
exploit across any arbitrary pair of cores would require a resource shared between all cores on the machine
which makes this problem significantly more challenging. Percival describes the threats associated with SMT
in more detail in Cache Missing for Fun and For Profit [1].
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2.2 Transmitting A Single Bit Across Processes
In case you have no clue on how to get started to build a covert channel to communicate an 8-bit integer, this
section provides you a tip: start with communicating a 1-bit value first. You should find it useful reading
this section to understand how to design a communication protocol and several common pitfalls when you
actually implement a protocol.

The discussion question and the exercise in this section are optional, meaning that you can get full credit
of Part 2 if you directly implement an 8-bit chat client. While, if your 8-bit chat client does not work
properly, you can get partial credit (10% of Lab 1) by completing a single-bit chat client.

Communication protocol: To build a chatting client, we suggest you first construct a communication
protocol, which includes: (1) Encode: what is the sender’s action for sending bit 1 and bit 0; (2) Receive:
what is the timing measurement strategy used by the receiver, such as the number of addresses to access;
(3) Decode: what is the threshold to be used to distinguish between bit 1 and bit 0.

You should come up with a tentative plan for (1) and (2), and then experimentally derive the threshold
used in (3). If you are unable to derive the threshold, meaning that there does not exist a threshold to
decode the bit, you will need to revisit your sender and receiver strategy.

Hint: To build a single-bit chatting client, you can use the whole L2 cache as the communication media.
The receiver can measure the latency of accessing multiple cache lines.

Discussion Question 4 (Optional): Describe your communication protocol to communicate a single-
bit value.

Common pitfalls: If the receiver needs to measure the latency of multiple memory accesses, you should
pay attention to the following micro-architectural features that can introduce substantial noise to your
communication channel.

• Cache line size: Be careful with the mismatch of the size of an integer and a cache line. Repeatedly
accessing the same cache line will result in cache hits and will not help you to detect the actual cache
states.

• Hardware prefetch: Modern processors have hardware that can prefetch data into the cache before
it is required as it attempts to anticipate future accesses. This may cause spurious cache evictions or
mask evictions caused by the victim. For example, if an address has been evicted by the sender and
is supposed to locate in L3, but it is prefetched by the hardware to the L2, your measurement will
mistakenly consider this cache line has not been evicted before.

Fortunately, the hardware prefetcher is not that smart. Generally, in most processors, it is only
triggered by linear, fixed-stride access patterns within a page. Therefore, as long as your access pattern
does not show a clear pattern, you can confuse the prefetcher to disable the prefetch effects.

• Cache replacement policy: While least recently used (LRU) is the most common example of a
cache replacement policy, practical processor implementations often use much more complex policies.
You may need to experiment a bit to roughly figure out how eviction and measurement works on your
processor.

Furthermore, be sure to carefully consider how you are accessing your cache lines. With Prime+Probe
attacks, it is common to encounter cache-thrashing or self-conflict, a situation in which the attacker
primes the cache set and evicts their own data with subsequent accesses while probing. One way to
avoid this problem is to prime the cache by accessing the eviction set in one direction and probe in the
reverse direction, as described by Tromer et al. [2].

• Noisy or inconsistent results: Because side channels exploit shared resources in unintended ways,
the resulting covert channels can be quite noisy. Modern processors often contain optimizations that
make them behave differently from the simplified architectures taught in class. This lab requires
experimentation to find working approaches and values. You should not expect your solution to work
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on the first attempt, so be sure to incrementally build up your solutions and verify that each step is
working before proceeding.

Exercise 6 (Optional): Derive the threshold for the decode operation. Implement a single-bit chatting
client.

2.3 Transmitting An 8-bit Integer Across Processes
To transmit an 8-bit integer across two isolated processes, you can build a covert channel using the L2 cache
since the sender and receiver will share the L2 via SMT. There is more than one way to do so, and we
describe two possible methodologies here. Feel free to explore other methodologies.

• A naïve approach to transmit an 8-bit integer is by sending each bit sequentially. If you have already
learned how to transmit a single bit in the above subsection, you can re-use your method to transmit
8 bits sequentially. In case you decide to go along this path, we have provided a string to binary
conversion function and a binary to string conversion function in utils.h and utils.c.

However, such a naïve approach requires the two processes to synchronize and from our experience
we believe the synchronization implementation to be non-trivial according to the feedback we received
from past semesters.

• The second approach to encode an 8-bit integer is by using set-indices in the L2 cache. Since an 8-bit
integer can have any value between 0-255, you can encode all possible values using 8 independent sets in
the L2. This approach does not require a non-trivial synchronization, but on the other hand, requires
that you implement a prime-evict-probe sequence at set-granularity between the sender and receiver.
Recollecting from our previous experiences, we would like to recommend this approach.

Implementing set-granularity prime-evict-probe sequences requires a deeper understanding of the the
virtual address abstraction, and huge-pages. In case you decide to go along this second path, we have
also provided an allocation of a huge page in the starter code in sender.c. We next briefly discuss the
virtual address abstraction and then given a primer on huge pages. You can skip the discussion on
huge pages if you do not plan to use this approach.

• There exist many other approaches. Several communication protocols have been discussed in “An
Exploration of L2 Cache Covert Channels in Virtualized Environments” [3].

Linux Hugepages: Keep in mind that the addresses you are dealing with in your C code are virtual
addresses. However, physical addresses (which you will not have access to within your code) may be used
when indexing into lower level caches. You may need to consider how address translation interacts with cache
indexing/tagging as well as run some experiments to see if this presents a problem for your cover channel
implementation. For a review of virtual memory, please refer to the resources section of the labs page.

The default page size used by most operating systems is 4K (212) bytes. You may find it useful to use a
larger page size to guarantee consecutive physical addresses.

In particular, Linux supports Huge TLB pages for private anonymous pages, which allow programs to
allocate 2 MiB of contiguous physical memory, ensuring 221 consecutive physical addresses.

The following sample code demonstrates how to allocate a single hugepage.

Monitoring Hugepage Usage: You can see if your huge page is being allocated or not by watching the
status of /proc/meminfo. Namely, if you run cat /proc/meminfo | grep HugePages_, you should see the
number of HugePages_Free decrease by 1 when your code is using one.

Discussion Question 5 (Optional): Given a 64-bit virtual address, fill in the table below. The table
is intended to help you to figure out how to find addresses that map to the same L2 cache set.
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1 void *buf= mmap(NULL, BUFF_SIZE, PROT_READ | PROT_WRITE,
2 MAP_POPULATE | MAP_ANONYMOUS | MAP_PRIVATE | MAP_HUGETLB,
3 -1, 0);
4

5 if (buf == (void*) - 1) {
6 perror("mmap() error\n");
7 exit(EXIT_FAILURE);
8 }
9

10 *((char *)buf) = 1; // dummy write to trigger page allocation

Listing 1: Allocating a hugepage.

Page Size 4KB 2MB
Page Offset Bits

Page Number Bits
L2 Set Index Bits

L2 Set Index Fully Under Control?

Table 2: Address calculation.

Discussion Question 6: Describe your communication protocol. Please refer to Section 2.2 for the
components involved in a protocol.

Exercise 7: Implement a chatting client that can communicate an 8-bit integer. Please refer to the
“Common Pitfalls” paragraph in Section 2.2 to debug your chat client.

2.4 Submission, Grading and Checkoff
You will submit the following items for this part.

• Push the final version of your code to your assigned Github repository.
• In the solutions.pdf document, include your answers for the discussion questions (Discussion Question

6 is required, and all the others are optional in this part).
The grading of this part is based on your checkoff. You and the course staff will also set up a 10-minute

checkoff, during which you will open up two terminals on the lab machine and run make run_sender in one
and make run_receiver in the other to demo your exploit. As mentioned before, if the 8-bit chat client does
not work, we will give partial credit (10% of the whole lab) if you have completed a single-bit chat client.

3 Capture the Flag (30%)
In this part of the lab, you will be attempting to extract a secret value from a victim program. You will get
a taste of a Capture the Flag (CTF) problem. The future labs will follow a similar pattern. Note that, we
have deliberately designed the Part 3 to be a relatively simple CTF problem. If you finished Part 2, this
part should not take you a lot of time.

To keep the lab manageable, we have created a simple program, victim-N.c, that performs a secret-
dependent memory access (pseudocode in Listing 2). The N will depend on how many accesses the victim
makes to the cache set with an index of the flag. For now, we explain the victim code assuming the victim
accesses 4 addresses. We explain at the end the other victim binaries. Your task will be to write a program,
attacker.c that determines this secret value.
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1 // Set flag to random integer in the
2 // range [0, NUM_L2_CACHE_SETS)
3 int flag = random(0, NUM_L2_CACHE_SETS);
4 printf(flag);
5

6 // Allocate a large memory buffer
7 char *buf = get_buffer();
8

9 // Find four addresses in buf that all map to the cache set
10 // with an index of flag to create a partial eviction set
11 char *eviction_set[N];
12 get_partial_eviction_set(eviction_set, flag);
13

14 // Main loop
15 while (true) {
16 for (int i = 0; i < N; i++) {
17 // Access the eviction address
18 (*(eviction_set[i]))++;
19 }
20 }

Listing 2: Victim pseudo-code.

Exercise 8: Complete the code in attacker.c to successfully extract the secret values from victim-{2,
3, 4}.

Using tmux, screen, or simply two SSH connections, you should be able to run make run_victim-N in
one terminal and make run_attacker in another terminal. These two make recipes will compile your code
and start the two processes on the correct CPUs using taskset. If you have problems running the victim
binary, you may need to run chmod +x victim-N within your lab directory.

Submission, Grading and Checkoff: As with Dead Drop, you will upload your code to your assigned
Github repository. In your scheduled checkoff time, you will open up two terminals on the lab machine, run
make run_victim-N on one, and run make run_attacker on the other to demo your exploit and show that
the two printed flag values are the same.

Partial Credit For Part 3, we have provided 3 different binaries of the victim, namely victim-2, victim-3,
and victim-4. The binaries access different number of eviction addresses that map to the same cache set as
the index of the flag. For example, victim-4 will access 4 eviction addresses, while victim-2 will access only
2 eviction addresses. Hence, the number of accesses the victim makes will act as a proxy to the difficulty of
Part3 of the lab. You will get 50% partial credit for making your attacker successfully capture the flag for
victim-4, 75% for victim-3, and full credit (100%) for victim-2.

Feedback (Optional)
We are collecting feedback for this lab After completing the lab, you have the option to submit your feedback
by completing this google form. If you do not have any concrete feedback, we would still appreciate it if you
could let us know how difficult you would like to rate the lab and how long it took you to complete the lab
in the google form. Your feedback will be valuable in helping us to improve the lab for future semesters.
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