
Lab 2: Spectre Attacks 6.888 Secure Hardware Design – Spring 2022

Lab 2: Spectre Attacks
Due date: Wednesday March 16th 11:59:59 PM ET

Points: This lab is worth 14 points (out of 100 points in 6.888).

Collaboration policy: Our full Academic Honesty policy can be found on the Course Information page
of our website. As a reminder, all 6.888 labs should be completed individually. You may discuss the
lab at a high level with a classmate, but you may not work on code together or share any of your code.

Getting started: Log in to your assigned machine. Your credentials and machine will be emailed to you.
It will be one of the arch-sec-X.csail.mit.edu machines (where X is one of 1, 2, 3, or 4). To connect via
ssh, run:

ssh YourUsername@arch-sec-X.csail.mit.edu

We are using git for assignment version management and submission for this lab. Instructions for setting
up git can be found on the course website. You will need to redo the first time setup from Lab 1 on your
assigned Lab 2 machine.

First time setup: Once you’ve logged into your arch-sec machine, you will need to set up your Git repo.
This needs to be redone as you are working on a different machine than the one we used for Lab 1. Once
you’ve completed the instructions on the course website under "New Machine Setup," you can pull the lab
2 code with the following:

git fetch lab_release

git merge lab_release/lab2 --allow-unrelated-histories -m “Merging lab code"

Introduction
In this lab we will be putting the Spectre attack into practice against the Linux kernel. You will complete
three CTF style problems of increasing difficulty to leak a secret from kernel memory using the cache as
a side channel. Specifically, we will be attacking a custom kernel module which listens to commands on
/proc/lab2-victim. We have provided starter code that communicating with the kernel module for you.

Each secret is a string of the form “MIT{some_secret_value}". The string can be up to 64 bytes in length
including the NULL terminator. You can consider the secret complete once you leak the NULL terminator.

In the first part, we will begin by implementing a Flush+Reload attack against a shared memory region
with the kernel. In this part you will get familiar with interacting with the kernel module and the general
project codebase. In the second part you will implement a standard Spectre attack. In the third part you will
implement a more advanced Spectre attack which requires carefully manipulating the speculative execution
behavior of the victim program.

Note: Do not make any assumptions about the secret other than it is a NULL terminated string of length
up to 64 bytes (including the NULL terminator). When doing the lab, you will notice that the secrets do not
change from run to run (they are constant for the lifetime of the kernel module). During grading, we may
use different secret values. They will never exceed 64 bytes and will always be NULL terminated. Our starter
code handles this for you.
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Get familiar with the lab codebase

• inc/lab2.h and src-common/lab2_helper.c provide a set of utility functions for you to use, similar to
those provided in Lab 1.

• src-common/main.c is used in all three parts. The main function sets up a shared memory region named
shared_memory of LAB2_SHARED_MEMORY_SIZE bytes, and a file descriptor for communicating with the
kernel module. The shared memory region is shared between userspace and the kernel.

• part1-src/attacker-part1.c is the file you will modify in Part 1 to implement your Flush+Reload
attack. The method call_kernel_part1 can be used for calling into the kernel module.

• part2-src/attacker-part2.c is the file you will modify in Part 2 to implement your Spectre attack.
The method call_kernel_part2 can be used for calling into the kernel module.

• part3-src/attacker-part3.c is the file you will modify in Part 3 to implement your advanced Spectre
attack. The method call_kernel_part3 can be used for calling into the kernel module.

• inc/lab2ipc.h contains bindings for the interface to the kernel module from userspace. You can ignore
this as our provided code handles the implementation details of communicating with the kernel.

Compiling and Testing the Project From the root directory (the lab2 folder), you can use make to
compile the project. part1, part2, and part3 will be produced in the same directory. Run them with
./part1, ./part2, and ./part3 respectively. The results of your attack will be printed to the console. On
success, you should see the secret leaked from kernel memory printed to the console.

We show an example of the expected output below:

1: $ ./part1
2: MIT{part1_secret_value}

We have also provided a checker script that will run your attack many times and report its behavior over
many runs. You can invoke this script from the main directory with ./check.py X, where X is the part
number to check. We have provided an example output of this tool below.

1: % ./check.py 1
2: Checking part 1 ...

You passed 950 of 1000 runs (95.0%)
Success! Good job

Background- The Linux Kernel

Figure 1: Overview of Address Space Separation

In this lab we will be attacking a custom Linux ker-
nel module. A kernel module is a piece of software
that runs in kernel space instead of user space. The
kernel has the most privilege on the system (even
greater privileges than programs run as root), and
has complete control over the system hardware. The
kernel lives in its own separate address space that
user programs cannot access. Figure 1 provides an
overview of the address space separation used in this
lab.

The user program (your code) cannot access ker-
nel memory directly, as the kernel pages are marked
private to the kernel in the page table. The kernel
can read and write all memory on the system. In
this lab, the user program will create a region of
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shared memory that the kernel module will map in
and interact with. This shared memory region is a
userspace memory region. From userspace we can use the cache as a side channel to reveal kernel data.
Specifically, by making the kernel read secret-dependent parts of the shared memory region, we can inspect
which parts of the shared memory region were cached to determine the secret.

The kernel is configured to boot with all Spectre/ Meltdown mitigations disabled (mitigations=off).
SMAP (supervisor mode access prevention) and SMEP (supervisor mode execution prevention) are both on,
which means that the kernel cannot directly read or execute userspace memory. Instead, the kernel module
temporarily remaps an alias of the shared memory region into kernel space so it can interact with it, and
then unmaps it before returning to the user. This is common practice in the kernel.

As a consequence of this remapping operation performed during context switch between user and kernel
space, a TLB miss on the shared memory region will happen each time the kernel attempts to read from the
shared memory region. For Parts 1 and 2, we prevent the TLB misses to make your attack easier by forcing
page walks before the secret-dependent memory access so that the TLB will hit on a read. We do not do this
for Part 3. As a result, you will need to craft a Spectre attack that can succeed despite the added latency
of a TLB miss.

The kernel module is defined in module-src/lab2km.c. For those who are curious, we use the procfs write
handler as the API through which user code can communicate with the kernel module. The bulk of message
processing and vulnerable code are all handled in the procfs write handler. You do not need to read the
kernel module code for this lab, the pseudocode provided here is sufficient to understand the vulnerabilities
you need to exploit.

1 Leaking Kernel Memory via Flush+Reload (35%)
In this part we will set up a side channel to leak information from the kernel using the cache and shared
memory. We will use this side channel later in our Spectre attacks as the channel through which the
speculatively loaded information is leaked.

In Lab 1 we implemented eviction by accessing many lines in our own address space, and then scanning
for changes made by the other process. Since we have shared memory in Lab 2, we can use the more reliable
Flush+Reload technique to leak information.

The pseudocode for the kernel victim code of part 1 is provided below:

1 def victim_part1(shared_mem, offset):
2 secret_data = part1_secret[offset]
3 load shared_mem[4096 * secret_data]

Listing 1: Part 1 Victim Pseudocode

The victim takes a pointer shared_mem which points to the starting of a shared memory region and an
integer offset as input. First, on line 2, the secret byte to leak is loaded from the secret array (part1_secret).
The byte to leak is chosen by offset. When offset is 0, the first byte will be leaked; when offset is 1, the
second byte will be leaked, and so on. Next, the victim coverts the secret data into an address by using the
the value of the byte to index the shared memory array. If the secret data was the character ‘A’ (0x41),
then the 0x41’th page in the shared memory region will be loaded into the cache.

Allowed Code: You can define your own helper methods as you desire. You can use any method in
inc/lab2.h, as well as the provided methods in attacker-part1.c. You should only use the provided
call_kernel_part1 method to interact with the kernel module.

Exercise 1: Run your Lab 1 Part 1 latency measurement code and derive the threshold to distinguish
L1/L2 and DRAM latency, as you will need this value later.
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Attack Outline: Recall that the secret is a string up to 64 characters long (including the NULL terminator).
The attacker should leak the secret one byte at a time with the Flush+Reload technique:

1. Flush: Flush the memory region from the cache using clflush.
2. Victim execution: Call the victim method to leak a given secret byte by properly configuring offset.
3. Reload: Reload the memory region, measure the latency of accessing each address, and use the latency

to determine the value of the secret. When the value is 0x00 (NULL terminator) the attack is complete.
We strongly suggest you build your attack step by step, that is, start by successfully leaking one character

first, then try to leak the whole string.

Discussion Question 1: How many addresses need to be flushed at the first step?

Exercise 2: Implement the Flush+Reload attack in part1-src/attacker-part1.c to leak the secret
string. Build the project with make and run ./check.py 1 from the lab 2 main directory to check
whether you have passed part 1 or not.

Discussion Question 2: Now assume the attacker and victim no longer share a memory region. Would
your attack still work? If not, changes could you need to make to make it work?

Interacting with the Kernel Module We have provided a helper method called call_kernel_part1
that you can use to interact with the kernel module via the procfs system. It takes three arguments– a file
descriptor to the kernel module, a pointer to the shared memory region, and the desired offset. kernel_fd
and shared_memory can be directly passed to this method without modification. The offset to use for a
given invocation is up to you.

Submission, Grading, and Checkoff: There is no checkoff for Part 1. This part is graded based only
on your changes to part1-src/attacker-part1.c and your answer to Discussion Question 1.

• You need to submit your code (part1-src/attacker-part1.c) to your assigned Github repository.
• Include your discussion question answers in a text file named solutions.txt placed in the lab 2 main

directory. This file should include the discussion questions from all parts of lab 2.
Full credit will be awarded to solutions that report the correct secret more than 95% of the time. Partial

credit will be awarded for solutions that behave worse than that. Each attempt should take no longer than
30 seconds.

2 Basic Spectre (40%)
Now that Flush+Reload is working, let’s move onto actually implementing Spectre! Below is the pseudocode
for part 2’s victim code:

1 part2_limit = 4
2 def victim_part2 (shared_mem, offset):
3 secret_data = part2_secret[offset]
4 mem_index = 4096 * secret_data
5

6 # to delay the branch on line 9
7 flush(part2_limit)
8

9 if offset < part2_limit:
10 load shared_mem[mem_index]

Listing 2: Part 2 Victim Pseudocode
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This victim code is a lot like Part 1, except it will only perform the load if offset is within a specific
size (namely, if offset is no larger than 4 bytes into the secret). The first 4 secret bytes can be loaded
non-speculatively as in Part 1, however anything beyond that can only be loaded speculatively.

Exercise 3: Copy your code in run_attacker from attacker-part1.c to attacker-part2.c. Test
whether your previous implementation works with the new victim.

You should see your Flush+Reload attack does not work any more. The reason is that the secret data
after the 4th character is never loaded if this code executed in order. However, we can use Spectre to bypass
this limit!

Vulnerability Explanation: When the processor encounters the if, it will begin computing the result of
offset < part2_limit. While the result of this comparison is unavailable, it will begin to either speculatively
execute the true or false condition. This speculation is based on the branch predictor ’s prediction for what
the branch will do. This prediction is based on past observations. So, if the victim_part2 method is called
many times where offset is small enough to fit into the limit, the predictor will be trained to always predict
that the true condition will fire.

We can train the branch predictor to produce a favorable prediction so that the branch we want is
speculatively executed while the branch condition is unavailable (that is, the CPU will guess our offset is
within the limit and speculatively perform the load). We deliberately introduce flush part2_limit on line 7
so that computing which direction the branch goes will take many cycles (due to the DRAM access). This
makes our attack easier to implement, as we have many cycles before the CPU figures out that the branch
should not have been taken.

Attack Outline: Below are the steps required to leak a single byte. You may need to alter your approach
to account for system noise.

1. Train: Train the branch predictor to expect to perform the load (take the “if" branch) by calling the
method many times with a small offset.

2. Flush: Flush the memory region from the cache using clflush.
3. Victim execution: Call the victim method to leak a given secret byte past the limit during speculative

execution.
4. Reload: Reload the memory region, measure the latency of accessing each address, and use the latency

to determine the value of the secret.

Common pitfalls: From your experience in Lab 1, you should be used to the fact that side channel
attacks generally do not work on the first attempt. We provide several tips below that may help you if you
get stuck.

• Noise: It is common to observe noise in performing any types of side channel attacks. Calling the
victim method just one time might not produce the most accurate results due to noise. You might
benefit from repeating the attack multiple times and use statistical methods to decode the secret to
achieve a higher precision.

• Branch predictor: Branch predictors involve significant complexity in modern processors. Since the
branch predictor is shared between userspace and kernel space, if the speculation is not working as
expected, you may need to reduced the number of branches in your code.

• Mixing measurements and output: In general with cache-based side channel attacks and Spectre-style
attacks, it is a bad idea to print latencies while measuring them. It is best to perform all measurements
in one loop, storing the results in an array, and then printing them in a second loop. The reason is that
any operations that you perform on the array will affect the branch history and potentially pollute
your cache state.
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Exercise 4: Implement the Spectre attack in attacker-part2.c to leak the secret string. Build the
project with make and run ./check.py 2 from the lab 2 main directory to check whether you have
passed part 2 or not.

Discussion Question 3: In our example, the attacker tries to leak the values in the array secret_part2.
In a real-world attack, people can use Spectre to leak arbitrary values in the victim’s address space.
Explain how the attacker can achieve this.

Discussion Question 4: Try to tune the training parameters and answer this question: What is the
fewest number of times you need to train the branch on line 9 in Listing 3 to make the attack work?

Interacting with the Kernel Module We have provided a helper method called call_kernel_part2
that you can use to interact with the kernel module just like part 1.

Submission, Grading, and Checkoff: There is no checkoff for Part 2. This part is graded in the same
way as Part 1.

• You need to submit your code (part2-src/attacker-part2.c) to your assigned Github repository.
• Include your discussion question answers in a text file named solutions.txt placed in the lab 2 main

directory. This file should include the discussion questions from all parts of lab 2.
Full credit will be awarded to solutions that report the correct secret more than 95% of the time. Partial

credit will be awarded for solutions that behave worse than that. Each attempt should take no longer than
30 seconds.

3 Part 3: Advanced Spectre (25%)
Now that we’ve gotten Spectre working, let’s try a harder version of the same problem. Below is the
pseudocode for Part 3:

1 part3_limit = 4
2 def victim_part3 (shared_mem, offset):
3 if offset < part3_limit:
4 false_dependency = long latency computation resulting in 0
5 secret_data = part3_secret[offset]
6 mem_index = 4096 * secret_data
7 load shared_mem[mem_index + false_dependency]

Listing 3: Part 3 Victim Pseudocode

There are two differences in the victim code compared to the version in part 2. First, the victim no longer
flushes the limit variable before the branch. Second, we have added a long latency false dependency to the
memory access, which means the memory access starts later in the speculation window. If you are curious,
you can check the code in lab2km.c for details.

Exercise 5: Copy your code in run_attacker from attacker-part2.c to attacker-part3.c. Test
whether your previous implementation works with the new victim.

You should see your attack does not work with the new victim any more.1 The reason is that in the
modified victim code, the memory access instruction that we try to monitor may not be issued speculatively
for three reasons.

1If your implementation from Part 2 can pass the test for part 3, congratulations and please reach out to us. We have
carefully designed this part to make the basic Spectre implementation work ineffectively. We would be curious to learn how
you made it work in one shot.
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First, the speculation window becomes shorter. The speculation window starts in the cycle the branch
enters the processor, and ends in the cycle where the condition is resolved. If the part3_limit variable is
cached, it will take very short time to return to the core, and the branch will be resolved very fast. As a
result, the speculation window becomes shorter. Second, the long latency dependence on the memory access
means that the long latency chain of instructions must be completed before the speculative load can begin.
It is possible the branch condition is resolved before the speculative load even starts. Third, as discussed
in the Background section, there is a TLB miss the first time the kernel tries to access a line in the shared
memory region. For parts 1 and 2, we secretly resolved this by forcing page walks on the shared memory
region for you. However, in part 3 we do not force page walks before running the vulnerable code. As a
result, the memory load must first perform a page table walk, which increases the time it takes to perform
the load (thereby increasing the chance the speculation window closes before your address makes it to the
cache).

To make your attack work, you will need to find a way to increase the speculation window so that the
speculative load has a higher chance of succeeding.

Hint: You cannot change the long latency memory address dependency, nor can you change the fact that
a TLB miss occurs when performing the load.

Discussion Question 5: Describe your strategy to extend the speculation window of the target branch
in the victim.

Exercise 6: Optimize the attack in attacker-part3.c to leak the secret string. Build the project with
make and run ./check.py 3 from the lab 2 main directory to check whether you have passed part 3 or
not.

Interacting with the Kernel Module We have provided a helper method called call_kernel_part3
that you can use to interact with the kernel module just like parts 1 and 2.

Submission, Grading, and Checkoff: You need to submit your code (attacker-part3.c) to the Github
repository and include your answers to the discussion question in solutions.txt. We would also appreciate
it if you could help improve this lab by including a description of (a) what challenges you ran into, (b) what
worked/didn’t work, and (c) any feedback you have for this lab for future years. You can include this in
solutions.txt.

There is no check-off for Part 3. We understand the attack may not work 100% reliably due to noise,
non-determinism, etc. We will give full credit if the attack can completely leak the secret at least once out
of 5 attempts. Each attempt should take no longer than 10 minutes. We will give partial credit if the attack
can recover most of the characters.

Discussion Question 6: Assume you are an attacker looking to exploit a new machine that has the
same kernel module installed as the one we attacked in lab 2. What information would you need to
know about this unknown machine to port your attack to the new system? Could it be possible to
determine that information experimentally? Briefly describe in 5 sentences or less.

Partial credit will be awarded for solutions that are functional but do not meet the accuracy requirements.
In general, if check.py reports “Success,” then you will receive full credit for that part. You can check all
parts at once with make and then ./check.py all.

Tips
• Calling the victim method just one time might not produce the most accurate results due to noise.

You might benefit from making helper methods- one to perform the attack once, and one to repeat it
a few times, and report the most common response.

• Don’t forget you can flush whatever address you want with the clflush helper method!
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