Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

Due date: Wednesday, April 20th 11:59:59 PM ET
Points: This lab is worth 14 points (out of 100 points in 6.888).
Help: If you have any questions, please ask on Piazza.

Collaboration policy: Our full Academic Honesty policy can be found on the Course Information page
of our website. As a reminder, all 6.888 labs should be completed individually. You may discuss the
lab at a high level with a classmate, but you may not work on code together or share any of your code.

Introduction

You have learnt the theory of how Rowhammer attacks [1] work. However, there are several challenges that
need to be tackled before you can observe bitflips on a real DRAM chip and conduct a practical Rowhammer
attack. One of the key challenges lies in finding memory addresses that map to neighboring rows in the
targeted DRAM.

In this lab, we will guide you to tackle this challenge step by step, as shown in Figure 1. In Part 1, you
will examine how virtual to physical address mapping works in Linux, and use this knowledge to observe
bitflips in the wild. In Part 2, you will extend your knowledge of DRAM geometry fundamentals and identify
the bank mapping function used by the architecture under evaluation. In the last part, you will be able to
find vulnerable rows by yourself and conduct an end-to-end Rowhammer attack.

Part 1
| 1
Page Table Lookup ;'(%QF;G.:_I a'::,;jarﬁ::
[Virtual Address] 9 [Physical Address] 9 [Bank ID]
| I
Part 2

Part 3

Figure 1: Lab 4 Overview.

C++: In this lab we’ll be using C++, which is a slight departure from previous labs (which used C). C++
is an object-oriented programming language which shares a majority of its syntax with C, and is backwards
compatible with C (apart from some minor exceptions). All of the C syntax you’ve learned and applied in
previous labs (ex. pointer referencing, bit manipulation, inline assembly etc.) equally applies in C++. We
use C++ in this lab to utilize its standard library data structure support (i.e. std::vector and std:map),
which removes the typical C burden to manage these structures at a low-level (ex. using malloc).

Getting Started With the Lab Infrastructure

Computing Resources: Due to the intrinsic physical requirements of the Rowhammer vulnerability,
your experiments must be run on the 6.888 lab machines. These machines have been verified to exhibit the
vulnerability, and your answers to some questions will be specific to their architecture/DRAM configuration.
There are fewer machines than students, so machines will be time shared.

We don’t recommend running any of these experiments locally on your own machine. Recent architectures
(which employ DDRA4 or later) have some basic mitigations which will defeat the simple hammering approach

https://piazza.com/class#TODO
http://csg.csail.mit.edu/6.888Yan/

Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

we’ll use in this lab. Hammering can also occasionally corrupt memory outside of your program’s memory
space (ex. OS page tables), which may also result in system crashes/stability issues.

As there are fewer available machines than students, and rowhammer experiments can interfere with each
other if run simultaneously, the lab machines are managed using HT Condor, a high-throughput job manage-
ment platform. You will use arch-sec-1.csail.mit.edu to develop and build your code, and use HT'Condor
to remotely launch your attack code on one of the vulnerable machines (csg-exp[6-8].csail.mit.edu). Note
that you should not access these vulnerable machines directly, as you may interfere with another student’s
experiments. Also note that a vast majority of this lab requires your code to be run under elevated privileges
(in order to handle address translation in Linux), which is handled automatically (and only possible) while
running your code under HTCondor.

IMPORTANT: Before starting the lab, edit launch.condor and update the ‘Requirements’ line to
reflect the specific machine assigned to you.

Using HTCondor: Since we use HTCondor to manage programs running on vulnerable machines, the
process where you launch your code and check its output is different from previous labs. We have created
multiple bash scripts to simplify the process. Here is a list of commands that you will use to interact
HTcondor:

e bash launch.sh [BINARY FILE]: run the specified binary file in your assigned remote machine. The
output will be placed in [BINARY FILE].out, and any errors generated by your code will be placed in
[BINARY FILE].error.

e condor_q: Check the status of your job, including its place in the queue. This command also prints
the id of your job. If your job is held, you can see more debugging information by issuing the condor_q
-hold command.

e condor_rm [ID]: Kill your job specified by the id. Note that Condor will kill your job after 10 minutes
of execution, to allow for usage fairness.

e cat [BINARY FILE].out: Check the output of your job by opening the corresponding output file. Feel
free to use any other editor commands.

Here is an example of using condor to run a program which prints Hello World (after running make).

1: $ bash launch.sh parte

2: Submitting job(s).

3: 1 job(s) submitted to cluster XX.
4: All jobs done.

5: $ condor_q

6: -- Schedd: arch-sec-1.csail.mit.edu : <127.0.0.1:96187... @ 01/27/22 13:45:13
7: OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

8: pwd ID: 56 1/27 13:45 _ _ 1 1 56.0

5: $ cat part@.out

6: Hello World!

{ Exercise 1: Try condor commands above and ensure that you can interact with your assigned machine }
properly.

Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

1 Observing Bitflips in the Wild (40%)
1.1 Virtual and Physical Addresses (20%)

In this part, you will implement the basic Rowhammer attack and observe bitflips in the wild. We have
calibrated the DRAM chips in our lab machine and we will give you several vulnerable physical addresses
to hammer. However, before you can hammer these physical addresses, you have to find the corresponding
virtual addresses.

Code skeleton: The source code (that you will modify) can be found in src/, and is separated into folders
corresponding to different parts of the lab (src/part[@-31). In Part 1 in particular, we provide the following
files:

e src/params.hh: Defines several key system parameters, including the size of a hugepage (i.e. 2MB),
the size of a DRAM row, etc.

e src/verif.hh: Contains declarations for functions which will help you check your work, and will be
used for grading.

e src/shared.hh and src/shared.cc: Contains functions which are used across the whole lab - in each
part of the lab you will be asked to complete a subset of the functions.

e src/partl/partl.cc: Contains setup and test code for part 1. Do not modify this file!

e src/partl/hammertime.cc: Contains hammer_addresses, which you will complete in Section 1.2.

You can compile the code by running the command make at the root of the repository, which will create
four executable files (part@, part1, part2, and part3) in the bin/ folder. Note that you will need to re-run
make each time you change your code to recompile it. You can test your program by running the command
./part1 and should observe the following output if the compilation works properly.

1: $./bin/parti
2: ERROR: Root permissions required!

3: $ bash launch.sh part1

4: Submitting job(s).

5: 1 job(s) submitted to cluster XX.
6 All jobs done.

~

$ cat partil.out
8: Part 1 Test FAILED: Incorrect number of pages in PPN_VPN map (current number of entries: Q)

Exercise 2: Run make, and make sure the code compiles successfully. Running the commands above
should result in the provided output.

Linux pagemap interface: Linux and the Intel machines in this lab use paged virtual memory. In this lab,
we assume that you know the basics of address translation — if you need a refresher, check out the lab help
page, or read 6.823’s lecture slides on virtual memory.

Linux provides the pagemap interface that allows userspace programs to examine page tables and re-
lated information. A userspace process can find out which physical page each virtual page is mapped to
from a file called /proc/pid/pagemap, where pid is the process id of the process being examined. The file
/proc/self/pagemap conveniently maps to the pagemap file corresponding to the process reading it.

/proc/pid/pagemap is a binary-encoded file containing one 64-bit value for each virtual page assuming a
page size of 4/KB. Effectively, /proc/pid/pagemap can be viewed as array which you can index using a virtual
page number to obtain an 64-bit value, which we call a page table entry.

http://csg.csail.mit.edu/6.888Yan/labs/
http://csg.csail.mit.edu/6.888Yan/labs/
http://csg.csail.mit.edu/6.823/Lectures/L04.pdf

Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

A single 64-bit page table entry, corresponding to a single virtual page number, contains the following
information. First, bits 0-54 of the entry is the physical page number, if the page is present in memory.
Second, bit 63 indicates whether the page presents in memory or not. Third, other bits have their own
meaning, which are not relevant for this lab. The complete information can be found in Linux kernel
documentation page.

In function virt_to_phys in shared.cc, we have provided you the code to perform file operations on
/proc/pid/pagemap. The provided file I/O code first opens the pagemap for reading, seeks through the file
until it reaches an offset corresponding to the virtual page number under inspection. It then reads the page
table entry into the variable entry. Note that /proc/pid/pagemap assumes a page size of 4KB (which is the
system default), and thus you should perform all manipulations in virt_to_phys as if we were dealing with
4KB pages (rather than hugepages).

To complete virt_to_phys, you will need to complete the following high-level tasks outlined in the
skeleton code:

1. Given a virtual address, derive its virtual page number (used to calculate where in the file to look).
2. Given a page table entry (entry), derive the physical page number.

3. Finally, compute the physical address for the input virtual address

[Exercise 3: Complete the virt_to_phys function in src/shared.cc.]

Translating the other way: We now have a function which converts virtual to physical addresses, but
we’ll also need a way to translate physical addresses to virtual ones. Later in this section, you’ll be hammering
specific physical addresses which we have been pre-determined to be especially vulnerable. Since you can
only access memory through virtual addresses, you’ll need to be able to lookup the virtual address for a
given physical address.

To do this, your next goal is to populate the PPN_VPN_map data structure, a map with physical page
numbers as keys and virtual page numbers as values. The PPN_VPN_map is an instance of a C++’s std: :map
object. C+-+ maps are very similar to python dictionaries, with key-value pairs being assigned in a very
similar way. One quirk with C+-+ maps is that, when using standard indexing operators (i.e. []), if you try
to retrieve a value which isn’t in the map C++ will return 0 (i.e. NULL) instead of throwing an error. !
You are also free to use other map functions if desired — a full description of the data structure can be found
here.

1 std::map<uint64_t, uint64_t> cpp_map;
2 uint64_t key = OxDEAD;
3 uint64_t value = OxBEEF;

s // Add or modify a key-value pair
¢ cpp_maplkey]l = value;

g // Retrieve a value for a key

o uint64_t key2 = 0xBAAD;

10 uint64_t value2 = cpp_maplkey2]

11 if (value2 == 0){

12 assert("Key does not exist!\n");

Throughout this lab we will exclusively use 2MB hugepages, as they simplify the manipulation of most
physical bits relevant to DRAM. In partl.cc (and other parts of this lab) we allocate a large (2GB)
block of hugepage-backed memory, which will be used for hammering addresses later in this section. In

1This shouldn’t pose a problem, however, since you won’t encounter any non-zero virtual page numbers.

https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://en.cppreference.com/w/cpp/container/map

Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

setup_PPN_VPN_map (in shared.cc), you will need to populate the PPN_VPN_map with corresponding (PPN,
VPN) pairs for each hugepage in the 2GB region. Note: You are asked to populate the map with page
numbers assuming a 2MB page size. Be careful here, while you indexed the /proc/self/pagemap assuming
4KB page sizes, you will need to use the full 2MB here (your virt _to_phys function will still work for huge

pages!).

e 2
Discussion Question 1: In a 64-bit system using 4KB pages, which bits are used to represent the
page offset and which are used to represent the page number? How about for a 64-bit system with 2MB

pages? In a 2GB buffer, how many 2MB hugepages are there?
N

e 7
Exercise 4: Complete the setup_PPN_VPN_map function in shared.cc. The output of your parti

(launched on Condor using the bash launch.sh partl command) will tell you whether the PPN to
VPN map is constructed correctly or not.

/

Once you’re able to configure the PPN_VPN_map, you can now use it to translate physical addresses into
virtual ones!

[Exercise 5: Complete the phys_to_virt function in shared.cc.]

1.2 Hammer Time (20%)

Now that we’re done with memory management, it’s time to actually write attack code! You will implement
the double-sided rowhammer attack, report the probability of observing bit flips, and evaluate how the
choices of addresses affect the effectiveness of the attack.

We’ve pre-profiled the lab machines for rows vulnerable to rowhammer. Note that vulnerable rows don’t
necessarily correspond to adjacent physical addresses, as we’ll further discuss in Part 2. To simplify the
hammering process in this section, we directly provide you with physical addresses corresponding to specific
rows you should target during the hammering process, as seen in Table 1. You will use these physical
addresses to activate the rows in question. In the main function (in partl.cc), we have provided code to
collect statistics and report the observed bitflips by calling a function hammer_addresses (in hammertime.cc),
which will be completed by you.

The main function will test different combinations of rows specified in Table 1 and print the resulted
number of bit flips for each combination that you can use to fill Table 2.

Machine Victim Row Above | Row Below | Distant Same Row ID,
(A) (B) Row (C) Diff. Bank (D)

csg-exp6.csail.mit.edu | 9x753C1000 Ox753E3000 Ox753A7000 0x75349000 0x753C3000

csg-exp7.csail.mit.edu | 9x75381000 0x753A3000 0x7536F000 0x75309000 0x75383000

csg-exp8.csail.mit.edu | 0x75360000 0x7538E000 0x75342000 0x753E8000 0x75362000

Table 1: Pre-Profiled Physical Addresses (Relative to the Victim)

Exercise 6: Fill in the victim address (addr_victim) and address A-D (addr_[A-D]) in part1.hh using
the addresses for your assigned machine.

Attack outline: Your attack should work with three rows, one victim row and two hammer rows. The
physical addresses of the three rows will be passed as arguments of the function hammer_phys. We describe
the high level attack overview below with hints that can help when you get stuck.

1. Prime the victim row to set the content of the row, which will be used for comparison later in step 3.
For our specific DRAM configuration, a row is of size 2!3 = 8K B.

Hint: Make sure that you align your priming correctly to row boundaries.

Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

2. Hammer two rows. Repeat alternatively accessing two rows from DRAM 5 million times.

Hint: When accessing an address from DRAM, the address will be fetched into cache and subsequent
accesses will be cache hits. You need to use c1flush to evict the two address (which are read in quick
succession) to ensure you always access rows in DRAM.

Hint: To access a row, you only need to access one address from that row. Make sure to access exactly
the addresses in Table 1, otherwise the accesses might go to different DRAM banks (discussed in more
detail i n Section 2).

3. Probe the victim row, compare with the primed results, and check whether any bit has been flipped.

When you working on your code, you may need to convert between integers (uint64_t) and pointers
(uint8_t) and vice-versa. You will find C++’s reinterpret_cast useful in performing such conversion:

1 uint64_t addr = OxDEADBEEF; // A 64bit integer

3 // Cast the 64bit integer to a pointer
4+ volatile uint8_t * addr_ptr = reinterpret_cast<volatile uint8_t *>(addr);

6 uint8_t tmp = xaddr_ptr; // Read using the casted pointer

Exercise 7: Complete the hammer_addresses function. The partl.cc code will use your function to
hammer each aggressor pair in Table 1 100x, and report how often the attack succeeds (at least one
bit flip). Report your results in Table 2. You should (at least) see some bitflips using pair A/B (i.e.
double-sided rowhammering).

Hammer Pairs A/B| A/C| A/D
Number of Successes
(out of 100 trials)

Table 2: Success rate of Rowhammer for different combinations of hammering rows.

Discussion Question 2: Do your results match your expectations? Why might some attacker pairings
result in more flips than others? Do you expect any of the pairs to never cause a flip?

Submission and Grading: There is no checkoff for Part 1. This part is graded manually based on the
following submitted materials: code and a pdf file.

e Code. You will need to submit part1/hammertime.cc to your assigned Github repository. You should
not modify other files. We will use the Github commit message to track your submission time. We
give partial credit (10% of the whole lab) if your code pass the test 1.1 for address translation.

e Discussion Questions. A pdf named as solutions.pdf at the root of your assigned Github repository.
You will create a pdf file to provide your answers to the discussion questions above. Note that this pdf
file will also be used by you to provide answers for the questions in Part 2 and Part 3.

2 Reverse-Engineering DRAM Bank Mapping Functions (40%)

In Part 1, we provided you with physical addresses to hammer and told you which rows are adjacent to
the victim row. You may have noticed that adjacent rows are not always consecutive in physical memory,
such as the victim address and the address B. This is because DRAM is physically organized into DIMMs,
Channels, Ranks, and Banks, necessitating its own addressing scheme. Recall that rowhammer effects are

Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

strongest when considering adjacent rows that exist in the same bank. You can refer to the detailed address
mapping of DRAM in the lecture slides.

As part of the DRAM addressing scheme, the DRAM bank mapping function dictates which DRAM bank
a physical address is assigned to. It takes a physical address as input, and outputs a bank ID — since there
are 16 banks in our DRAM configuration, the bank ID is thus a 4-bit binary value. Each of these 4 bank ID
bits is computed by XORing a selection of bits from the physical address.

In Part 2, you will use a timing side channel to reverse engineer the DRAM bank mapping function
for our particular architecture, which will assist you to locate adjacent rows and find your own vulnerable
bitflips in Part 3.

In this part, we’ll guide you through a reverse engineering process which follows these three steps:

1. Implement a function to determine whether two physical addresses map to the same bank

2. Collect a large number of addresses and bin them into multiple groups, such that all the addresses in
a group map to the same bank

3. Try different bank mapping functions to find one that does not violate your binning results

2.1 Detecting Bank Collisions (10%)

As the first step of reverse engineering the bank mapping function, you will first implement a function which
will help us determine whether two given physical addresses are mapped to the same bank. If two addresses
are mapped to the same bank, when accessed, there will be bank collisions which result in longer observable
access latencies. Therefore, bank collisions can be detected via timing side channel attacks, which you should
be very familiar with from Lab 1. This time, however, instead of attacking the caches you will exploit either
memory bus contention, row buffer contention, or both.

Here are two possible timing strategies you might consider employing:

e Detect row buffer conflicts: Given two physical addresses « and y, make sure both of the addresses
are not cached. First, access address « from DRAM (filling the row buffer with z’s row). Next, access
address y from DRAM, which will close the row buffer opened by x if it maps to the same bank. Finally,
access address z again from DRAM and measure its access latency. If x and y are mapped to the same
bank but different rows, then this access will result in a row buffer miss and should take a longer time
to complete.

e Detect bus contention and row buffer conflicts: Given two physical addresses z and y, again
make sure both of the addresses are not cached. Access the two addresses back-to-back without memory
fences in between and measure their collective access latency. If the two addresses are mapped to the
same bank and different rows, they will cause memory bus contention in addition to row buffer conflicts,
and thus will result in even longer latency.

Implement an approach of your choice in measure_bank_latency (in the file shared.cc). The function
takes two physical addresses as arguments and measure the access latency using one of the above approaches.
We have provided two reference implementations and python scripts for you to check whether your code works
correctly or not.

Code skeleton (you do not need to modify any of these files!):

e src/part2/part2_1.cc: This file contains the main function which calls the measure_bank_latency,
populates two arrays same_bank_latency and diff_bank_latency, and outputs latency results that
can be processed by the python scripts.

e bin/part2_referencel: a reference implementation that detects only row buffer conflicts.

e bin/part2_reference2: a reference implementation that detects both bus contention and row buffer
conflicts.

http://csg.csail.mit.edu/6.888Yan/slides/9-Rowhammer.pdf

Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

e src/part2/run.py: similar to Lab 1, it launches a target binary program 100 times to collect statistics
in a folder data. The folder data will be overwritten each time you run the script.

e src/part2/graph.py: similar to Lab 1, it takes the statistics in folder data and generate a histogram
in the folder graph.

Once you've completed your implementation of measure_bank_latency, collect and generate the timing
histogram by running bash launch.sh part2_1. The final timing histogram will be written to the graphs/
folder. To view the histogram, either copy it to your own machine via SCP, or run gv graphs/graph_name.pdf
to view the histogram over the network (you may need to set up x-forwarding/add the forwarding flag when
connecting via ssh, i.e. ssh arch-sec-1.csail.mit.edu -X).

Exercise 8: Complete the function measure_bank_latency, and use the provided python scripts to
generate a histogram. You can use the reference implementations to see whether your code works
correctly or not.

N

P
Discussion Question 3: According to the histogram, what is the appropriate threshold to determine

whether two addresses are mapped to the same bank or not?
N J

2.2 Find the Correct Bank Mapping Function (30%)

Now you can determine whether two addresses are mapped to the same bank, you can reverse engineer the
mapping function by completing the last two steps: 2) collecting a large number of addresses and binning
them into multiple groups so that the addresses in the same group are mapped to the same bank; 3) trying
all possible bank mapping functions to find one that does not violate your binning results.

To make the lab easier, instead of asking you to try all possible functions via brute force, we will give you
3 candidate functions and ask you to figure out which one is correct. The 3 candidate functions are listed
below (listed as {By, By, Be, B3}, where B is the output bank ID:

Function 0: {a13 ® a14,a15 B a16, a17 D a18,a19 B a0}
Function 1: {(llg ® ay5,a14 D a16,a17 D @19, 018 D (IQO}
Function 2: {a13 @ a17, a14 ® a1s,a16 © azo, a15 ® aig}

First, you will need to write a function (in shared.cc) which takes a physical address and a candidate ID
from 0-2 (corresponding to the three mapping functions above), and computes the bank ID corresponding
to that candidate function.

[Exercise 9: Complete the phys_to_bankid function.]

Now to identify the correct function for our architecture, you should complete the following steps (in
part2/part2_2.cc, as always launching with bash launch.sh part2_2).

1. Allocate a large memory region by calling function allocate_pages.

2. Select many addresses that are mapped uniformly across different rows (usually about 1000 addresses
is enough to produce clear, correct bins).

3. Bin these addresses into 16 groups where each group corresponds to one bank. You will need to use
the function measure_bank_latency and the threshold you have derived.
Hint: It may be useful to instantiate an array of 16 C++ vectors, with each vector representing a bin.

4. Compute the bank id of all the addresses using each of the candidate functions and check whether the
computed bank ids for the addresses in the same group are consistent or not.

Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

If the correct function is chosen, the computed bank ids for the addresses in the same group should be
the same. However, there may exist some noise in the binning process, and you may observe that the binning
results are not 100% accurate. Therefore, you should check the ratio of addresses that have a consistent
bank id in each group.

We define the consistency rate as the proportion of addresses in a bin which map to the most common
bank ID in that bin. For instance, if a 4-element bin has addresses mapping to banks [1,1,3,1], the consistency
rate of that bin is 75%.

Generally, when using the correct mapping function, the consistency rate should be at or above 98%, as
around 98% of the addresses in the same group will have the same bank id, with the remaining 2% having
different bank ids. It’s okay if your consistency rates fluctuate slightly across tests — it is sufficient to report
the results from an arbitrary iteration.

Exercise 10: Use the binning methods described above to compute the consistency rate (minimum,
maximum, and average across all of the 16 groups) when using the 3 candidate mapping functions and
fill the table below.

’ \ Function 0 \ Function 1 | Function 2

Minimum
Average
Maximum

Table 3: Consistency rate across each of the 16 bank groups

[Discussion Question 4: Which function is the correct bank mapping function?]

Submission and Grading: There is no checkoff for Part 2. This part is graded manually based on the
following submitted materials: code and a pdf file.

e Code. You will need to submit file part2/shared.cc and part2/part2_2.cc to your assigned Github
repository. You should not modify other files. We will use the Github commit message to track your
submission time.

e solutions.pdf. You will include the generated histogram in the pdf file with the answers to the
discussion questions.

3 Finding Vulnerable Rows (20%)

Using our newfound DRAM bank mapping function, you can easily find adjacent rows. Let’s now try to find
your own vulnerable addresses! You can start by hammering addresses around an arbitrary victim row of
your choosing. Recall that the row index of an address is the bits [31:17] (inclusive) of the physical address
— also make sure to select your addresses such they target the same bank! If no flips are found in that row,
continue trying different victim rows until a vulnerability is found.

e N
Exercise 11: Complete the phys_to_bankid function with the mapping function we discovered from

part 2. Hammer around to find your own vulnerable addresses. Feel free to re-use your Part 1 imple-
mentation to check that your vulnerable addresses exhibit repeatable flips!

Discussion Question 5: What rows did you find bit flips in (give 2-3 examples)? Report the physical
addresses. Approximately how many aggressor page pairs did you try to find each vulnerable row?¢

%This isn’t a competition! There’s inherent randomness involved here, so your numbers may be very different than
someone else’s!

Lab 4: Rowhammer Attacks 6.888 Secure Hardware Design — Spring 2022

Discussion Question 6: In this lab, you make Rowhammer attack work by flipping a bit in the
DRAM. What kind of attack can you do with such a bitflip? Given an example.

Submission and Grading: You need to submit your code (shared.cc and part3/part3.cc) to the Github
repository and include your answers to the discussion question in solutions.pdf. Besides, we will appreciate
it if you could help improve this lab by including a description of (a) what challenges you ran into, (b) what
worked/didn’t work, and (c) any feedback you have for this lab for future years.

There will be a checkoff for this part. You will meet with the course staff and reproduce a bit flip
using your reported physical address. We understand the Rowhammer phenomenon may not always be
reproducible. We will give full credits if you can run the attack code for part 3 and find another bit flip.

Acknowledgments

Contributors: Peter Deutsch, Miguel Gomez-Garcia, Mengjia Yan.

References

[1] Yoongu Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM
disturbance errors”. In: ACM SIGARCH Computer Architecture News 42.3 (2014), pp. 361-372.

10

	Observing Bitflips in the Wild (40%)
	Virtual and Physical Addresses (20%)
	Hammer Time (20%)

	Reverse-Engineering DRAM Bank Mapping Functions (40%)
	Detecting Bank Collisions (10%)
	Find the Correct Bank Mapping Function (30%)

	Finding Vulnerable Rows (20%)

