
Hardware Support for Memory Safety

Mengjia Yan
mengjia@csail.mit.edu

6.888 Secure Hardware Design

mailto:mengjia@csail.mit.edu

Overview

• Memory corruption problems and existing mitigations
• SoK: Eternal War in Memory; Szekeres et al; S&P’13

• Recent progress on hardware defenses

26.888 - L10 Hardware Support for Memory Safety

2020

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Modify a
data pointer

Modify code …

… to the attacker
specified code

The Problem

• C/C++ is unsafe
• Everybody runs C/C++ code
• They surely have exploitable vulnerabilities

36.888 - L10 Hardware Support for Memory Safety

Low-level Language Basics (C/C++/Assembly)

• Programmers have more control
+ Efficient
- Bugs
- Programming productivity

• Pointers
• Address of variables: index of memory location

where variable is stored
• It is programmers’ responsibility to do pointer check,

e.g. NULL, out-of-bound, use-after-free

4

0x00..0000

0xFF..FFFF

OS kernel
space

TEXT (code)
Global/Static

DATA

Stack

Heap

6.888 - L10 Hardware Support for Memory Safety

Low-level Language Basics

6

stack

TEXT (code)

How will the stack
look like during the

execution?

6.888 - L10 Hardware Support for Memory Safety

Code Injection Attack Example

int func (char *str) {
char buffer[12];
strncpy(buffer, str, len(str));
return 1;

}

int main() {
….
func (input);
…

}

7

stack

TEXT (code)
Shell code:

PUSH “/bin/sh”
CALL system

6.888 - L10 Hardware Support for Memory Safety

Code Injection Attack

8

stack

TEXT (code)

Return addr

…

buffer

stack

TEXT (code)

Shell code

Return addr

…

6.888 - L10 Hardware Support for Memory Safety

9

• Think about mitigations

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

int func (char *str) {
char buffer[12];
strncpy(buffer, str, len(str));
return 1;

}

Mitigations

10

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Memory Safety
(Bounds check, Fat

pointers)

ASLR

Code Pointer
Integrity

Stack canary,
Shadow stack

Non-executable
Data (W⊕X)

Execute injected
shellcode

11

• Think about attack variations

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Execute injected
shellcode

Attack Variations

12

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Execute available
gadgets/functions

Return-Oriented Programming (ROP)

Gadget example:

pop rdi
ret

13

stack

TEXT (code)

return addr 1

return addr 2

6.888 - L10 Hardware Support for Memory Safety

stack

TEXT (code)

Shell code

Return addr

…

14

Attack Variations

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use-After-Free

• Example
• How to check?

156.888 - L10 Hardware Support for Memory Safety

16

• More Variations
Output data

variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

HeartBleed Vulnerability

• Publicly disclosed in April 2014
• Missing a bound check
• Bug in the OpenSSL cryptographic

software library heartbeat extension

176.888 - L10 Hardware Support for Memory Safety

https://heartbleed.com/

1818

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

1919

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Data-only attack example:

bool isAdmin = false;

...

if (isAdmin)

// do privileged operations

2020

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Modify a
data pointer

With one memory error,
more memory errors can
be raised by corrupting

other pointers.

2121

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Modify a
data pointer

Modify code …

… to the attacker
specified code

22

Trend reported by Microsoft
https://github.com/microsoft/MSRC-Security-
Research/tree/master/presentations/2019_02_BlueHatIL

Why not High-level Language?

• Benefits:
• Easier to program
• Simpler concurrency with GC
• Prevents classes of kernel bugs

• Downsides (performance):
• Safety tax: Bounds, cast, null-pointer

checks
• Garbage collection: CPU and memory

overhead, pause time
• Feasibility?

23

The benefits and costs of writing a POSIX kernel in a high-level language; Cutler et al (OSDI’18)

6.888 - L10 Hardware Support for Memory Safety

BISCUIT: new x86-64 Go kernel

No fundamental challenges due to HLL

But many implementation puzzles
• Interrupts
• Kernel threads are lightweight
• Runtime on bare-metal

...

Surprising puzzle: heap exhaustion

24

Why not Rust (no GC)?

Rust compiler analyzes the program to partially
automate freeing of memory.
This approach can make sharing data among multiple
threads or closures awkward

6.888 - L10 Hardware Support for Memory Safety

HW Support for Memory Safety

• Spatial safety (bound information)
• Temporal safety (allocation/de-allocation information)

• Low-level reference monitor
• SW approach: add checks à performance overhead (e.g., SoftBound)
• Execution time: Extra instructions to perform the check
• Memory: Maintain extra meta data (in shadow memory)

256.888 - L10 Hardware Support for Memory Safety

SoftBound: Highly Compatible and Complete Spatial Memory Safety for C; Nagarakatte et al; PLDI’09

2626

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Modify a
data pointer

Modify code …

… to the attacker
specified code

Make a pointer
go out of bounds

Make a pointer
become dangling

Intel MPX (Memory Protection Extension)

27

4 bound registers (bnd0-3)
• Bndmk: create base and bound metadata
• Bndldx/bndstx: load/store metadata from/to bound tables
• Bndcl/bndcu: check pointer with lower and upper bounds

Any problem?

BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free; Zhang et al; ASPLOS’19

Analysis of Intel MPX

Intel MPX is impractical for fine-grained memory safety
• High overheads
• Check is sequential
• loading/storing bounds registers involves two-level address translation

• Does not provide temporal safety
• Does not support multithreading transparently
• Meltdown? Bound Range Exceeded (#BR) hardware exception

28

Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack; OLEKSENKO et al; SIGMETRICS’18

6.888 - L10 Hardware Support for Memory Safety

ARM PA (Pointer Authentication)
• Widely used in Apple processors

• Motivation:
• 64-bit pointer, but 48-bit virtual address

space
• Unused high bits

• Hash:
• A tweakable message authentication code

(MAC)
• ARM calls it PAC (pointer authentication

code)
• Context:

• secret key
• salt (could be the stack pointer)

296.888 - L10 Hardware Support for Memory Safety

Before function call Before function return

3030

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Modify a
data pointer

Modify code …

… to the attacker
specified code

Modify a
code pointer …

ARM MTE/Intel MPK
• 2019, Google announced that it is adopting Arm’s MTE

in Android

• Memory locations are tagged by adding four bits of
metadata to each 16 bytes of physical memory

• Where to store tags?
• Pointer tag is stored in top byte of the pointer
• Physical memory tag is stored in hardware

316.888 - L10 Hardware Support for Memory Safety

Any problems?

Armv8.5-A Memory Tagging Extension White paper
https://security.googleblog.com/2019/08/adopting-arm-
memory-tagging-extension.html

ARM MTE/Intel MPK
• 2019, Google announced that it is adopting Arm’s MTE in

Android

• Memory locations are tagged by adding four bits of
metadata to each 16 bytes of physical memory

• Where to store tags?
• Pointer tag is stored in top byte of the pointer
• Physical memory tag is stored in hardware

• Limited tag bits
• Cannot ensure two allocations have different colors
• But can ensure that the tags of sequential allocations

are always different

326.888 - L10 Hardware Support for Memory Safety

Armv8.5-A Memory Tagging Extension White paper
https://security.googleblog.com/2019/08/adopting-arm-
memory-tagging-extension.html

33

Control Flow Integrity (CFI)

p = &f
jmp p

q = &g
jmp q

f() {
…

}

g() {
…

}

6.888 - L10 Hardware Support for Memory Safety 34

Control Flow Integrity (CFI)

p = &f
jmp p

q = &g
jmp q

f() {
…

}

g() {
…

}

ID

ID

6.888 - L10 Hardware Support for Memory Safety 35

Control Flow Integrity (CFI)

p = &f
jmp p

q = &g
jmp q

f() {
…

}

g() {
…

}

ID

ID

check ID

check ID

6.888 - L10 Hardware Support for Memory Safety 36

Control Flow Integrity (CFI)

p = &f
jmp p

jmp q

f() {
…

}

g() {
…

}

ID

ID

check ?

check ?

if (…)
q = &f

else
q = &g

6.888 - L10 Hardware Support for Memory Safety 37

Over-approximation Problem

p = &f
jmp p

jmp q

f() {
…

}

g() {
…

}

ID

ID

check ID

check ID

if (…)
q = &f

else
q = &g

6.888 - L10 Hardware Support for Memory Safety 38

Summary

• Memory corruption problems: An eternal war

• Attack variations and mitigations

• Recent hardware support

396.888 - L10 Hardware Support for Memory Safety

2020

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Modify a
data pointer

Modify code …

… to the attacker
specified code

