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Overview

• Memory corruption problems and existing mitigations
• SoK: Eternal War in Memory; Szekeres et al; S&P’13

• Recent progress on hardware defenses
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The Problem

• C/C++ is unsafe
• Everybody runs C/C++ code
• They surely have exploitable vulnerabilities
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Low-level Language Basics (C/C++/Assembly)

• Programmers have more control
+ Efficient
- Bugs
- Programming productivity

• Pointers
• Address of variables: index of memory location 

where variable is stored
• It is programmers’ responsibility to do pointer check, 

e.g. NULL, out-of-bound, use-after-free
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Low-level Language Basics
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stack

TEXT (code)
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execution?
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Code Injection Attack Example

int func (char *str) { 
char buffer[12]; 
strncpy(buffer, str, len(str));
return 1; 

} 

int main() { 
…. 
func (input); 
…

}
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stack

TEXT (code)
Shell code:

PUSH “/bin/sh”
CALL system
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Code Injection Attack
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…
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• Think about mitigations
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Mitigations
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• Think about attack variations
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Attack Variations
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Return-Oriented Programming (ROP)

Gadget example:

pop rdi
ret
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stack

TEXT (code)

return addr 1

return addr 2
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Attack Variations
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Use-After-Free

• Example
• How to check?
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• More Variations
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HeartBleed Vulnerability

• Publicly disclosed in April 2014
• Missing a bound check
• Bug in the OpenSSL cryptographic 

software library heartbeat extension
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Data-only attack example:

bool isAdmin = false; 

... 

if (isAdmin) 

// do privileged operations
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Trend reported by Microsoft
https://github.com/microsoft/MSRC-Security-
Research/tree/master/presentations/2019_02_BlueHatIL



Why not High-level Language?

• Benefits:
• Easier to program
• Simpler concurrency with GC
• Prevents classes of kernel bugs

• Downsides (performance):
• Safety tax: Bounds, cast, null-pointer 

checks 
• Garbage collection: CPU and memory 

overhead, pause time
• Feasibility?
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The benefits and costs of writing a POSIX kernel in a high-level language; Cutler et al (OSDI’18)

6.888 - L10 Hardware Support for Memory Safety 



BISCUIT: new x86-64 Go kernel

No fundamental challenges due to HLL 

But many implementation puzzles
• Interrupts 
• Kernel threads are lightweight
• Runtime on bare-metal

... 

Surprising puzzle: heap exhaustion 
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Why not Rust (no GC)?

Rust compiler analyzes the program to partially 
automate freeing of memory.
This approach can make sharing data among multiple 
threads or closures awkward
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HW Support for Memory Safety

• Spatial safety (bound information)
• Temporal safety (allocation/de-allocation information)

• Low-level reference monitor
• SW approach: add checks  à performance overhead (e.g., SoftBound)
• Execution time: Extra instructions to perform the check
• Memory: Maintain extra meta data (in shadow memory)
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Intel MPX (Memory Protection Extension)
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4 bound registers (bnd0-3)
• Bndmk: create base and bound metadata
• Bndldx/bndstx: load/store metadata from/to bound tables
• Bndcl/bndcu: check pointer with lower and upper bounds

Any problem?

BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free; Zhang et al; ASPLOS’19



Analysis of Intel MPX

Intel MPX is impractical for fine-grained memory safety
• High overheads
• Check is sequential
• loading/storing bounds registers involves two-level address translation

• Does not provide temporal safety
• Does not support multithreading transparently
• Meltdown? Bound Range Exceeded (#BR) hardware exception
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Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack; OLEKSENKO et al; SIGMETRICS’18
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ARM PA (Pointer Authentication)
• Widely used in Apple processors

• Motivation: 
• 64-bit pointer, but 48-bit virtual address 

space
• Unused high bits

• Hash: 
• A tweakable message authentication code 

(MAC)
• ARM calls it PAC (pointer authentication 

code)
• Context:

• secret key
• salt (could be the stack pointer)
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ARM MTE/Intel MPK
• 2019, Google announced that it is adopting Arm’s MTE 

in Android

• Memory locations are tagged by adding four bits of 
metadata to each 16 bytes of physical memory

• Where to store tags?
• Pointer tag is stored in top byte of the pointer 
• Physical memory tag is stored in hardware

316.888 - L10 Hardware Support for Memory Safety 

Any problems?

Armv8.5-A Memory Tagging Extension White paper
https://security.googleblog.com/2019/08/adopting-arm-
memory-tagging-extension.html



ARM MTE/Intel MPK
• 2019, Google announced that it is adopting Arm’s MTE in 

Android

• Memory locations are tagged by adding four bits of 
metadata to each 16 bytes of physical memory

• Where to store tags?
• Pointer tag is stored in top byte of the pointer 
• Physical memory tag is stored in hardware

• Limited tag bits
• Cannot ensure two allocations have different colors
• But can ensure that the tags of sequential allocations 

are always different 
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Armv8.5-A Memory Tagging Extension White paper
https://security.googleblog.com/2019/08/adopting-arm-
memory-tagging-extension.html
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Control Flow Integrity (CFI)

p = &f
jmp p

q = &g
jmp q

f() {
…

}

g() {
…

}
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Control Flow Integrity (CFI)
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Control Flow Integrity (CFI)

p = &f
jmp p

q = &g
jmp q

f() {
…

}

g() {
…

}

ID

ID

check ID

check ID
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Control Flow Integrity (CFI)

p = &f
jmp p

jmp q

f() {
…

}

g() {
…

}

ID

ID

check ?

check ?

if (…)
q = &f

else
q = &g
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Over-approximation Problem

p = &f
jmp p

jmp q

f() {
…

}

g() {
…

}

ID

ID
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if (…)
q = &f

else
q = &g
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Summary

• Memory corruption problems: An eternal war

• Attack variations and mitigations

• Recent hardware support
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