Hardware Support for Memory Safety

Mengjia Yan
mengjia@csail.mit.edu

6.888 Secure Hardware Design

i csATL

eeeeeeeeeeeeeeeeeeeeeeeeee

mailto:mengjia@csail.mit.edu

I Overview

* Memory corruption problems and existing mitigations
e SoK: Eternal War in Memory; Szekeres et al; S&P’13

* Recent progress on hardware defenses

6.888 - L10 Hardware Support for Memory Safety 2

The Problem

e C/C++ is unsafe
* Everybody runs C/C++ code
* They surely have exploitable vulnerabilities

6.888 - L10 Hardware Support for Memory Safety

Low-level Language Basics (C/C++/Assembly)

0x00..0000
* Programmers have more control

+ Efficient
- Bugs
- Programming productivity s l

 Pointers

* Address of variables: index of memory location Stack I
where variable is stored

* Itis programmers’ responsibility to do pointer check, B Ve
e.g. NULL, out-of-bound, use-after-free space

OXFF..FFFF

6.888 - L10 Hardware Support for Memory Safety 4

Low-level Language Basics

int hello() {

int a = 100;
return a;

}

int main() {
int a;
int b = -3;
int ¢ = 12345;
int *p = &b;
int d = hello();
return 0;

}

6.888

How will the stack
look like during the
execution?

- L10 Hardware Support for Memory Safety

stack

Code Injection Attack Example

int func (char *str) { Shell code: _

char buffer[12];

. PUSH “/bin/sh”
strncpy(buffer, str, len(str)); CALL system stack
return 1;
}
int main() {
func (input);
}

6.888 - L10 Hardware Support for Memory Safety

I Code Injection Attack
o TeTlode) | TEXT(eode) |

stack stack

buffer

6.888 - L10 Hardware Support for Memory Safety

Make a pointer
go out of bounds

v
Use pointer to
write (or free)

* Think about mitigations T

Modify a
code pointer ...

\ 4
... to the address of
shellcode/gadget

int func (char *str) { é !
char buffer[12]; o s
strncpy(buffer, str, len(str)); & :
return 1’ Execute injected
} shellcode

Q"

Control flow
hijack attack

I Mitigations

Make a pointer
go out of bounds

X

v

Use pointer to

Memory Safety
(Bounds check, Fat
pointers)

write (or free)

T 7

Modify a
code pointer ...

\ 4

Code Pointer
Integrity

... to the address of
shellcode/gadget

ASLR

$

v

Use pointer by
return instruction

Stack canary,

l Shadow stack

Execute injected

shellcode

Non-executable
Data (WEX)

Control flow
hijack attack

10

* Think about attack variations

Make a pointer
go out of bounds

v

Use pointer to
write (or free)

T 7

Modify a
code pointer ...

\ 4
... to the address of
shellcode/gadget

é v

Use pointer by
return instruction

Execute injected

shellcode

Control flow
hijack attack

11

I Attack Variations

Make a pointer
go out of bounds

X

v

Use pointer to
write (or free)

)

Modify a

code pointer .

\ 4

... to the address of
shellcode/gadget

$

v

Use pointer by
return instruction

v

Execute available
gadgets/functions

v
Execute injected
shellcode
:/Y\:
Control flow
hijack attack

12

I Return-Oriented Programming (ROP)
et [P e (ode)

stack stack

Gadget example:

pop rdi
ret

1

6.888 - L10 Hardware Support for Memory Safety

Attack Variations

Make a pointer
go out of bounds

Make a pointer
become dangling

P

\ 4

v

Use pointer to
write (or free)

)

Modify a

code pointer ...

\ 4

... to the address of
shellcode/gadget

&

v

V

Use pointer by
indirect call/jump

v

Use pointer by
return instruction

v

Execute available
gadgets/functions

v

Execute injected
shellcode

Control flow
hijack attack

14

I Use-After-Free

* Example
e How to check?

6.888 - L10 Hardware Support for Memory Safety

15

Make a pointer
go out of bounds

* More Variations

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

:(r\:
v v
Use pointer to Use pointer to
write (or free) read
De
J v
Modify a Output data
code pointer ... variable
VL \ 4
... to the address of Interpret the
shellcode/gadget output data
v Vv v
Use pointer by
return instruction
l)\ |
v AV ¥
Execute injected
shellcode
» e
Y v
Control flow Information
hijack attack leak

HeartBleed Vulnerability

Qp Heartbeat - Normal usage

: : : : send
* Publicly disclosed in April 2014 cerven sendme Server
. . if you are there: i
* Missing a bound check Client ~ "birc" o l
g ——

* Bug in the OpenSSL cryptographic
software library heartbeat extension

W Heartbeat - Malicious usage

Server, send me) Server
this 500 letterJ bird. Server

word if you are master key is
Client there: "bird" 31431498531054.

l User Carol wants
to change
password to

"password 123"...

S

https://heartbleed.com/

6.888 - L10 Hardware Support for Memory Safety 17

Make a pointer
go out of bounds

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

:(r\:
v v
Use pointer to Use pointer to
write (or free) read
p
J v v
Modify a Modify a Output data
code pointer ... data variable ... variable
VL v \ 4
... to the address of ... to the attacker Interpret the
shellcode/gadget specified value output data
v Vv v ‘
Use pointer by Use corrupted data
return instruction variable
l)\ |
v AV ¥
Execute injected
shellcode
» e
Y \ 4 \4
Control flow Data-only Information
hijack attack attack leak

Data-only attack example:

bool isAdmin = false;

if (isAdmin)

// do privileged operations

Make a pointer
go out of bounds

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

:(r\:
v v
Use pointer to Use pointer to
write (or free) read
p
J v v
Modify a Modify a Output data
code pointer ... data variable ... variable
VL v \ 4
... to the address of ... to the attacker Interpret the
shellcode/gadget specified value output data
v Vv v ‘
Use pointer by Use corrupted data
return instruction variable
1)\ |
v AV ¥
Execute injected
shellcode
» e
Y \ 4 \4
Control flow Data-only Information
hijack attack attack leak

Make a pointer
go out of bounds

Make a pointer
become dangling

:(r\:
v v
Use pointer to Use pointer to
write (or free) read
[e |
p
v) v v
Modify a J Modify a Modify a Output data
data pointer code pointer ... data variable ... variable
VL v \ 4
. to the address of ... to the attacker Interpret the
shellcode/gadget specified value output data
With one memory error,)\
more memaory errors can ¥ \Vg 1)
be raised by corrupting Use pointer by Use pointer by Use corrgpted data
other pointers. indirect call/jump return instruction variable
l |
v S :
Execute available Execute injected
gadgets/functions shellcode
» e
Y \ 4 \4
Control flow Data-only Information
hijack attack attack leak

Make a pointer
go out of bounds

Make a pointer
become dangling

:(r\:
v v
Use pointer to Use pointer to
write (or free) read
[> e |
p
v v) v v
Modify a Modify code ... Modify a Modify a Output data
data pointer code pointer ... data variable ... variable
\ 4 ‘L \4 \ 4
... to the attacker __to the address of ... to the attacker Interpret the
specified code shellcode/gadget specified value output data
¥ v ¥ .
Use pointer by Use pointer by Use corrgpted data
indirect call/jump return instruction variable
l |
v z/\ v
Execute available Execute injected
gadgets/functions shellcode
» e
Y \ 4 \4
Code corruption Control flow Data-only Information
attack hijack attack attack leak

Trend reported by Microsoft
Drilling down Into root causes jermeenmesmscsans

e CatSCoF CVES by PRrclie Stack corruptions are essentially
dead

100%
90%
i Use after free spiked in 2013-2015
due to web browser UAF, but was
mitigated by Mem GC

70%
60%
50%
Heap out-of-bounds read, type

confusion, & uninitialized use
have generally increased

40%
30%
20%
k" Spatial safety remains the most

0% common vulnerability category

2006 2007 2008 2009 2010 20M 2012 2013 2014 2015 2016 2017 2018 (heap OUt‘Of‘bOUﬂdS read/write)
W Stack Corruption ® Heap Corruption B Use After Free ®m Type Confusion ® Uninitialized Use ® Heap OOB Read m Other

N

Note: CVEs may have multiple root causes, so they can be counted in multiple categories

I Why not High-level Language?

* Benefits: * Downsides (performance):
e Easier to program » Safety tax: Bounds, cast, null-pointer
e Simpler concurrency with GC checks
« Prevents classes of kernel bugs * Garbage collection: CPU and memory
overhead, pause time
* Feasibility?

The benefits and costs of writing a POSIX kernel in a high-level language; Cutler et al (OSDI’18)

6.888 - L10 Hardware Support for Memory Safety 23

BISCUIT: new x86-64 Go kernel

No fundamental challenges due to HLL

But many implementation puzzles Why not Rust (no GC)?
* InterrUptS Rust compiler analyzes the program to partially
e Kernel threads are lightweight automate freeing of memory.
. . This approach can make sharing data among multiple
Runtime on bare-metal threads or closures awkward

Surprising puzzle: heap exhaustion

6.888 - L10 Hardware Support for Memory Safety 24

HW Support for Memory Safety

* Spatial safety (bound information)
* Temporal safety (allocation/de-allocation information)

* Low-level reference monitor
* SW approach: add checks = performance overhead (e.g., SoftBound)
e Execution time: Extra instructions to perform the check
 Memory: Maintain extra meta data (in shadow memory)

SoftBound: Highly Compatible and Complete Spatial Memory Safety for C; Nagarakatte et al; PLDI’09

6.888 - L10 Hardware Support for Memory Safety 25

Make a pointer
go out of bounds

Make a pointer
become dangling

:(r\:
v v
Use pointer to Use pointer to
write (or free) read
[> e |
p
v v) v v
Modify a Modify code ... Modify a Modify a Output data
data pointer code pointer ... data variable ... variable
\ 4 ‘L \4 \ 4
... to the attacker __to the address of ... to the attacker Interpret the
specified code shellcode/gadget specified value output data
¥ v ¥ .
Use pointer by Use pointer by Use corrgpted data
indirect call/jump return instruction variable
l |
v z/\ v
Execute available Execute injected
gadgets/functions shellcode
» e
\ 4 Y \ 4 \4
Code corruption Control flow Data-only Information
attack hijack attack attack leak

4 bound registers (bnd0-3)

Original Program

p=malloc(16);
. Ilp=p+4;
*p e Ial;

Instrumented Program

p=malloc(16);

bnd0 = bndmk(p,16);
bndstx (&p,p,bnd0);
. Ip=p+4;

bnd1 = bndldx(&p,p);
bndcl (&p, bnd1);
bndcu (&p, bnd1);

*p - 'a';

Bndmk: create base and bound metadata
Bndldx/bndstx: load/store metadata from/to bound tables
Bndcl/bndcu: check pointer with lower and upper bounds

bndstx (Ptr Addr., PtrVal.,, [Base, Bound));
bndstx (&p, 0x1000, [0x1000, 0x1010));

.

BNDCFGx—p

v
Bound Table Entry (32B)

Base |Bound |PtrVal [Unused

0x1000 0x1010 0x1000Unused

BDE (8B)

Bound Table (4MB)

Bound Directory (2GB)

BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free; Zhang et al; ASPLOS’19

Intel MPX (Memory Protection Extension)

Any problem?

27

Analysis of Intel MPX

/ 2,
Intel MPX is impractical for fine-grained memory safety //}

g—y

* High overheads
* Check is sequential
* loading/storing bounds registers involves two-level address translation

* Does not provide temporal safety
* Does not support multithreading transparently

* Meltdown? Bound Range Exceeded (#BR) hardware exception

Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack; OLEKSENKO et al; SIGMETRICS’18

6.888 - L10 Hardware Support for Memory Safety 28

ARM PA (Pointer Authentication)

Widely used in Apple processors

(a) Signing
Motivation: (Pointer)
* 64-bit pointer, but 48-bit virtual address
space (ContextH Hash)
* Unused high bits (_PAC Pointer)
17 Bits 47 Bits
Hash: ﬁ%/'
* A tweakable message authentication code
(MAC) _] o Before function call
* ARM calls it PAC (pointer authentication
code) 1| pacia lr, sp
2| sub sp, sp, #0x40
Context: s|str 1r, [sp, #0x30]
* secret key al ...

BAOOWOND

(b) Verifying
(PAC Pointer)
('Hash H Context)
(" valid Pointer)

Before function return

ldr 1r, [sp, #0x30]
add sp, sp, #0x40
autia .Ir, :sp

ret

 salt (could be the stack pointer)

6.888 - L10 Hardware Support for Memory Safety

29

Make a pointer
go out of bounds

Make a pointer
become dangling

:(r\:
v v
Use pointer to Use pointer to
write (or free) read
[> e |
p
v v J v v
Modify a Modify code ... Modify a Modify a Output data
data pointer code pointer ... data variable ... variable
\ 4 ‘L \4 \ 4
... to the attacker __to the address of ... to the attacker Interpret the
specified code shellcode/gadget specified value output data
¥ v ¥ .
Use pointer by Use pointer by Use corrgpted data
indirect call/jump return instruction variable
l |
v z/\ v
Execute available Execute injected
gadgets/functions shellcode
» e
Y \ 4 \4
Code corruption Control flow Data-only Information
attack hijack attack attack leak

I ARM MTE/Intel MPK

e 2019, Google announced that it is adopting Arm’s MTE
in Android

char *ptr = new char [16]; / memory colored

-l_ Memory locations are tagged by adding four bits of
/6///' metadata to each 16 bytes of physical memory

ptr[17] = 42; // color mis -> overflow
* Where to store tags?

e Pointer tag is stored in top byte of the pointer
* Physical memory tag is stored in hardware

o
- ° o
//' Any problems?

ptr[10] = 10; / color mis -> use-after-free

delete [] ptr; / memory on free

Armv8.5-A Memory Tagging Extension White paper
https://security.googleblog.com/2019/08/adopting-arm-
memory-tagging-extension.htm/
6.888 - L10 Hardware Support for Memory Safety 31

I ARM MTE/Intel MPK

e 2019, Google announced that it is adopting Arm’s MTE in
char *ptr = new char [16]; / memory colored Android

-_ * Memory locations are tagged by adding four bits of
///. metadata to each 16 bytes of physical memory

ptr[17] = 42; // color mis -> overflow
* Where to store tags?

delete [] ptr; / memory on free * Pointer tag is stored in top byte of the pointer
* Physical memory tag is stored in hardware

//' e Limited tag bits

ptr[10] = 10; / color mis -> use-after-free e Cannot ensure two allocations have different colors

e But can ensure that the tags of sequential allocations

Armv8.5-A Memory Tagging Extension White paper are always different

https://security.googleblog.com/2019/08/adopting-arm-
memory-tagging-extension.html
6.888 - L10 Hardware Support for Memory Safety 32

a

Intel® Control-Flow Enforcement Technology (Intel CET)

INDIRECT BRANCH
TRACKING (IBT)

+

SHADOW
STACK (SS)

INTEL —
CET —

INDIRECT BRANCH
TRACKING (IBT)

IBT delivers indirect branch protection to defend against
jump/call oriented programming (JOP/COP) attack methods.

PROGRAM
IN MEMORY

endbranch

<main>:

BTN X

Intel CET will help prevent
attackers from jumping to
arbitrary addresses

movqg $0x4004fb, -8(%rbp)
mov__-8(%rbp), Y%rdx
call *%rdx

retq

SHADOW STACK (SS)

SS delivers return address protection to defend against
return-oriented programming (ROP) attack methods.

STACK

Return 1
Return 2

Intel CET will help block call if return
addresses on both stacks don't match

33

~

I Control Flow Integrity (CFl)

6.888 - L10 Hardware Support for Memory Safety

34

I Control Flow Integrity (CFl)

6.888 - L10 Hardware Support for Memory Safety

35

I Control Flow Integrity (CFl)

p = &f/' () {
Che‘:k-}jmp D

6.888 - L10 Hardware Support for Memory Safety

36

I Control Flow Integrity (CFl)

p = &f/' () {
check| ? jmp p 5
}
it (..)
qg = &f
else -
q = &g g() {
? .
check ':%Jmp q .
}

6.888 - L10 Hardware Support for Memory Safety

37

I Over-approximation Problem

ID
p = &f””—”’_,,,————’* () {
check| ID jmp p 5
}
it (..)
q = &f
else ID
q = &g g() {
checknoi%jmp q :
}

6.888 - L10 Hardware Support for Memory Safety

Summary

* Memory corruption problems: An eternal war

* Attack variations and mitigations R

‘ MO:i_fV a ‘ Outp:(data

data variable ... variable

* Recent hardware support e | e |
p p pecified val output data

Use pointer by

6.888 - L10 Hardware Support for Memory Safety 39

