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Recall Debugging Hardware

• In 6.004, you are asked to design a single-cycle CPU
• How to test function correctness? 



Real-world Processor Design

• RISC-V ISA: 145 pages
• https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

• RISC -> CISC

• Single-cycle -> Pipelined -> Out-of-order -> Speculation

• Core -> Memory Hierarchy -> Multi-core

• OS -> Interrupts -> Virtualization

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf


Pentium FDIV bug

• What is it?
• A hardware bug affects FPU
• The processor would return 

incorrect FP results when dividing 
certain pairs of high-precision 
numbers.

• Reported in 1994

Each data point should be ~3.1789 x 10−8 higher on the y-axis than its predecessor to the left, but in 
the region 4195834.4 < x < 4195835.9 the result differs from the expected value by ~8.14 x 10−5.

From Wikipedia



Consequences/Impacts

• Discovered by Thomas Nicely who was working on computational 
number theory in June, 1994

• The bug went public in October, 1994

• Intel’s bad responses
• Conditional replacement: disastrous press
• No-questions-asked replacement: $475M cost in 1994, 10% replacements



http://davefaq.com/Opinions/Stupid/Pentium.html#glitch

http://davefaq.com/Opinions/Stupid/Pentium.html


Bug Explanation

• Shift-and-subtract • Sweeney, Robertson, and Tocher (SRT)
Compute quotient of N/D

if D = 0 then error(DivisionByZeroException) end
Q := 0 -- Initialize quotient and remainder to zero
R := 0 
for i := n − 1 .. 0 do -- Where n is number of bits in N

R := R << 1 -- Left-shift R by 1 bit
R(0) := N(i) -- Set the least-significant bit of R equal              

to bit i of the numerator
if R ≥ D then

R := R − D 
Q(i) := 1 

end
end

The bug: Five of the 
1066 entries had been 

mistakenly omitted

https://en.wikipedia.org/wiki/Division_algorithm


Consequences/Impacts

• Software patches. How?

• Significant impact on verification
• A marked increase in the use of formal verification and number theory in 

hardware design



The AMD Phenom TLB Bug

• Affected AMD quad-core Opteron and Phenom processors in 2007 
• Can cause random crashes
• AMD gave two confirmed situations in real world usage:

• 1) Windows Vista 64-bit running SPEC CPU 2006
• 2) Xen Hypervisor running Windows XP and an unknown configuration of applications

• Described in Erratum 298 as a cache coherence problem
• Bug Explanation

• TLB
• Cache coherence
• Exclusive caches

https://www.anandtech.com/show/2477/2



Errata 298

https://www.amd.com/system/files/TechDocs/41322_10h_Rev_Gd.pdf



AMD Nested Interrupts DOS

• Allowed a guest VM to fault in a way that would cause the CPU to 
hang in a microcode infinite loop, allowing any VM to DoS its host.



Intel Broken Hyper-Threading

• 2017: Intel Skylake and Kabylake, broken hyper-threading
• Errata:

• Short Loops Which Use AH/BH/CH/DH Registers May Cause Unpredictable System Behavior.

• Problem: 
• Under complex micro-architectural conditions, short loops of less than 64 instructions that 

use AH, BH, CH or DH registers as well as their corresponding wider register (e.g. RAX, EAX 
or AX for AH) may cause unpredictable system behavior. This can only happen when both 
logical processors on the same physical processor are active.

• Implication: 
• Due to this erratum, the system may experience unpredictable system behavior.



Errata

ASPLOS’15



Design + Validation Process

Design Pre-silicon 
Verification Fabrication Post-silicon 

Validation Production



Functional Verification

From “David Kaplan: When hardware must just work”

Functional Formal
Operate on large designs 
over 10M nand gates

Yes No

Verification scheme Stimulus:
- Directed (hand written)
- Random (auto generated)

Constraint driven exhaustive
testing

Designs Full CPU, IP, SOC, etc. Small blocks: Multiply, 
Divide, CRC, Floating-point, 
etc.

Development work Testbench, stimulus, 
reference models, etc

Lemmas, constraint, etc.

Power aware verification Yes No



Several Research Efforts

• End-to-End Verification of ARM Processors with ISA-Formal, CAV’16

• Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip 
(SoC) Verification
• https://princetonuniversity.github.io/isca22-ila-tutorial/

• Commercial Model Checking Tool: JasperGold

https://princetonuniversity.github.io/isca22-ila-tutorial/


Easy v.s. Hard to Find Bugs

Easy to find bugs
• Basic functional behavior

• Does this mode work?
• Are exceptions correctly generated?

• Formal proofs
• Is multiplier output correct?

• Coverage holes
• Can all exceptions be generated?
• Are all instructions executed?

Hard to find bugs
• System level behavior

• Protocol violations
• FIFO overruns/underruns

• Multiple random events
• 5 unlikely asynchronous events in a row

• Long runtime events
• Statistically unlikely matches

• Multiple loads where 20 address bits match

From “David Kaplan: When hardware must just work”



Hunting Hardware Bugs in the 
Post-Meltdown Era



Meltdown

• We generally consider Meltdown as a bug (as oppose to Spectre)

• Should be easy to fix… But …

• Meltdown -> Foreshadow -> MDS -> Zombie Load 

• How to end this chain?



Meltdown

…
x = load kernel_addr // trigger a page fault, deferred
y = load array[x*64]
…



Foreshadow -- L1 Terminal Fault (L1DT)

…
x = load enclave_addr // trigger a terminal fault

// data in L1
y = load array[x*64]
…



Forshadow-NG
…
x = load addr // incur a terminal fault

// if data in L1
y = load array[x*64]
…



Microarchitecture Data Sampling (MDS)

• Exploiting internal microarch structures:
• Store buffer, Load port, Fill buffers

• RIDL: Rogue In-Flight Data Load
• Fallout: Leaking Data on Meltdown-resistant CPUs
• ZombieLoad: Cross-Privilege-Boundary Data Sampling

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html



RIDL Explained

• The processor forwards in-flight data from the LFBs (with no 
addressing restrictions) 

…
x = load NULL //invalid or           

//unmapped page
y = load array[x*64]
…



Meltdown -> Foreshadow -> 
MDS -> Zombie Load 



Consider Software Bugs Hunting/Fixing

• Approach 1: Hire a lot of experts and stare at the code
• Basically Intel was on it in the last few years without showing 

the code
• Black-box hacking

• Approach 2: Test suite, but need to be updated. And how 
to generate test cases?
• Fuzzing
• Symbolic Execution => generally require grey-box or white-box



Fuzzing History

• Random: “cat /dev/urandom | program”
• Class assignment in “Advanced Operating Systems” at University of Wisconsin 

(1988)

• Generation: Write a BNF spec -> introduce anomalies
• PROTOS from OUSPG (2002) & Block-based Fuzzing from Dave Aitel (2002)

• Mutation: Assemble valid input corpus -> introduce anomalies
• Eg. radamsa, zzuf, etc

• Apply random mutations to well-formed inputs and observe the 
results



Fuzzing In A Nutshell

• Automatic generate test examples
• Crash is generated by assertions/specifications

• Simple yet effective
• Industry standard

From Riding the Fuzzing Hype Train (RAID'21 Keynote)



Types of Fuzzing

• Blackbox

• Whitebox

• Greybox

From Blackbox Fuzzing to Whitebox Fuzzing towards Verification; Patrice Godefroid Microsoft Research

int obscure(int x, int y) 
{ 

if (x==hash(y))
error(); 

return 0; 

}



Crashes != Unique Bugs

• The highly-stochastic nature of fuzzing means that PoCs commonly 
exercise many program behaviors that are orthogonal to the crash’s 
underlying root cause. 

• Examples of misclassification when detecting memory corruption bugs
• 1. duplicate bugs crash at different addresses, e.g., invalid vptr
• 2. different bugs crash at same function, e.g., memcpy

Igor: Crash Deduplication Through Root-Cause Clustering; Jiang et al; CCS’21



Idea: Fuzzing for Microarch Vulnerabilities

• What is the input?

• What is the specification?

• Coverage?

• Actual Bug? 

Instruction sequences

Timing interference

No idea



The Micro-benchmark Approach (I)



The Micro-benchmark Approach (II)



The Micro-benchmark Approach (III)



Fuzzing for Automatic Bug Detection (I)



Fuzzing for Automatic Bug Detection (II)



Fuzzing for Automatic Bug Detection (III)



Fuzzing for Automatic Bug Detection (IV)



An Example: Orisis

Potential 
Challenges?



Challenges and Potential Solutions

• How to ensure reset works properly? 
• => randomize the ordering of testing the triples. Old, hot ordering.

• How about noise? Frequency, prefetcher, etc. 
• => Repeat

• Applicability to transient execution? 
• Put the trigger in retpoline => perfect mis-prediction

• The majority of what they found are known attacks



Some Findings

• A faster FLUSH+RELOAD
• This MOVNTDQ instruction with a non-temporal hint also evicts the accessed 

memory address from the cache. A later load will be faster, potentially due to 
coherence protocol.

- reset: `MOVNTDQ` 
- trigger: flush
- measure: load

Practical uses?



Takeaways

• There are a good number of hardware bugs

• Testing v.s. Formal verification v.s. Fuzzing 

• Difficult to fix hardware bugs, e.g., Meltdown-style
• An example of fuzzing to automatically detect vulnerabilities


