Hardware Bugs

Mengjia Yan

mengjia@csail.mit.edu

I)

CSAIL

I Recall Debugging Hardware

* In 6.004, you are asked to design a single-cycle CPU

* How to test function correctness?

Register File (rf)

g“ﬁ 2|2 dst] rdata
nextPc HE RN
A
|| L T
4 »| execute 3
[oJol = —| decode [dinst a1 (=
/\ inst |—> 2
e L addr
Instruction Data
Memory Memory
(iMem) (dMem)

Figure 1: Overall structure of the single-cycle RISC-V processor.

MIT 6.004 ISA Reference Card: Instructions

Instruction Syntax Description Execution
LUI lui rd, luiConstant Load Upper Immediate reglrd] <= luiConstant « 12
JAL jal rd, label Jump and Link reglrd] <= pc + 4

pc <= label
JALR jalr rd, offset(rs1) Jump and Link Register reglrd] <= pc + 4

pc <= {(reglrs1] + offset)[31:1]1, 1’b0}
BEQ beq rs1, rs2, label Branch if = pc <= (reglrs1] == reglrs2]) ? label: pc + 4
BNE bne rs1, rs2, label Branch if # pc <= (reglrs1] != reglrs2]) ? label: pc + 4
BLT blt rsi1, rs2, label Branch if < (Signed) pc <= (reglrs1] <s reg[rs2]) ? label: pc + 4
BGE bge rs1, rs2, label Branch if > (Signed) pc <= (reglrs1] >=; reglrs2]) ? label: pc + 4
BLTU bltu rs1, rs2, label Branch if < (Unsigned) pc <= (reglrs1] <, reglrs2]) ? label: pc + 4
BGEU bgeu rs1, rs2, label Branch if > (Unsigned) pc <= (reglrs1] >=, reglrs2]) ? label: pc + 4
LW 1w rd, offset(rs1) Load Word reg[rd] <= mem[reg[rs1] + offset]
SW sw rs2, offset(rs1) Store Word mem[reglrs1] + offset] <= reglrs2]
ADDI addi rd, rs1, constant Add Immediate reglrd] <= reglrs1] + constant
SLTI slti rd, rs1, constant Compare < Immediate (Signed) reglrd] <= (reglrs1] <s; constant) 2 1 : @
SLTIU sltiu rd, rs1, constant | Compare < Immediate (Unsigned) | reglrd] <= (reglrs1] <, constant) ? 1 : @
XORI xori rd, rsl1, constant Xor Immediate reglrd] <= reglrs1] " constant
ORI ori rd, rsl1, constant Or Immediate reglrd] <= reglrs1] | constant
ANDI andi rd, rs1, constant And Immediate reglrd] <= reglrs1] & constant
SLLI slli rd, rs1, shamt Shift Left Logical Immediate reglrd] <= reglrs1] « shamt
SRLI srli rd, rs1, shamt Shift Right Logical Immediate reglrd] <= reglrs1] », shamt
SRAI srai rd, rs1, shamt Shift Right Arithmetic Immediate reglrd] <= reglrs1] »; shamt
ADD add rd, rs1, rs2 Add reglrd] <= reglrs1] + reglrs2]
SUB sub rd, rsi1, rs2 Subtract reglrd] <= reglrs1] - reglrs2]
SLL sll rd, rsi1, rs2 Shift Left Logical reglrd] <= reglrs1] « reglrs2][4:0]
SLT slt rd, rs1, rs2 Compare < (Signed) reglrd] <= (reglrs1] <s reglrs2]) 21 : @
SLTU sltu rd, rsi, rs2 Compare < (Unsigned) reglrd] <= (reglrs1] <, reglrs2]) ? 1 : @
XOR xor rd, rs1, rs2 Xor reglrd] <= reglrs1] " reglrs2]
SRL srl rd, rs1, rs2 Shift Right Logical reglrd] <= reglrs1] », reglrs2]1[4:0]
SRA sra rd, rs1, rs2 Shift Right Arithmetic reglrd] <= reglrs1] »s reglrs2][4:0]
OR or rd, rs1, rs2 Or reglrd] <= reglrs1] | reglrs2]
AND and rd, rs1, rs2 And reglrd] <= reglrs1] & reglrs2]

Note: lwiConstant is a 20-bit value. offset and constant are signed 12-bit values that are sign-extended to 32-bit values. label

is a 32-bit memory address or its alias name. shamt is a 5-bit unsigned shift amount.

Real-world Processor Design

* RISC-V ISA: 145 pages
e https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

e RISC -> CISC
* Single-cycle -> Pipelined -> Out-of-order -> Speculation
e Core -> Memory Hierarchy -> Multi-core

* OS -> Interrupts -> Virtualization

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Pentium FDIV bug

* What is it?
* A hardware bug affects FPU

* The processor would return
incorrect FP results when dividing
certain pairs of high-precision
numbers.

* Reported in 1994

4,195,835

2070 1.333820449136241002
3,145,727

4,195,835

—_— =1 2
3.145.727 333739068902037589

1.333830 =
1.333820 T*o—o—o
1.333810 ‘

1.333800
1.333790

1.333780
1.333770

1.333760 -
1.333750 ’ ‘
1.333740

1.333730 T T T T T T T T T T T T T 1

Result of dividing numerator by 3,145,727

Numerator

Each data point should be ~3.1789 x 1078 higher on the y-axis than its predecessor to the left, but in
the region 4195834.4 < x < 4195835.9 the result differs from the expected value by ~8.14 x 10™.

From Wikipedia

Consequences/Impacts

* Discovered by Thomas Nicely who was working on computatlonal

number theory in June, 1994 "/5

* The bug went public in October, 1994

* Intel’s bad responses @
* Conditional replacement: disastrous press

* No-questions-asked replacement: $475M cost in 1994, 10% replacements

/.// \ f_ \ “
(06

Some humor for you:

Q: How many Pentium designers does it take to screw in a light bulb?
A: 1.99904274017, but that's close enough for non-technical people.

Q: What do you get when you cross a Pentium PC with a research grant?
A: A mad scientist.

Do you think it bothers x86 users that the 486 is a functional upgrade to the Pentium?

In response to the Pentium bug, PowerMac officials have announced that they will be
adding the control panel "Pentium Switcher" that allows users to decide whether the
PowerMac should emulate pre-Pentium or post-Pentium FDIV behaviour.

TOP TEN NEW INTEL SLOGANS FOR THE PENTIUM

9.9999973251 It's a FLAW, Dammit, not a Bug

8.9999163362 It's Close Enough, We Say So

7.9999414610 Nearly 300 Correct Opcodes

6.9999831538 You Don't Need to Know What's Inside
5.9999835137 Redefining the PC--and Mathematics As Well
4.9999999021 We Fixed It, Really

3.9998245917 Division Considered Harmful

2.9991523619 Why Do You Think They Call It *Floating* Point?
1.9999103517 We're Looking for a Few Good Flaws
0.9999999998 The Errata Inside

http://davefaq.com/Opinions/Stupid/Pentium.html#glitch

http://davefaq.com/Opinions/Stupid/Pentium.html

I Bug Explanation

* Shift-and-subtract * Sweeney, Robertson, and Tocher (SRT)
Compute quotient of N/D

Divisor]%

- « o ® . Sxoxx.xxy 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

if D = 0 then error(DivisionByZeroException) end o TR R R

Q := 0 -- Initialize quotient and remainder to zero Ty 00 0 00 000000000000

00.10 1 1 1 1 110 0 0 0 0 0 0 0 0 0 O

R :=O . 00.11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . . . § 01.00

fori:=n-1..0do -- Where n is number of bits in N S ol e

R = R << 1 -= Left-Shlft R by 1 blt % 0110\ 2 4|(B 1 1 1 1 1 1 1 1 1 1 1 1 1

. . . . & o1l 2 2 2 2 4|1 11 11 1 1 1 1 1 1

R(0) := N(i) -- Set the least-significant bit of R equal .

to bit i of the numerator oory 22 222 2 22 2 2| L L

. 10.10 22 2 2 2 2 2 2 Z 2 Z 7|

if R > D then il 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2

202 2R 2R 2R R 2N 280 2R R 282

R:=R-D The bug: Five of the o
Q(i) =1 1066 entries had been

end mistakenly omitted
end Figure 4: Radix-4 next quotient/root selection table

A = 1 if negative and y bit = 1; A = 2 otherwise;

B = 2 if negative and y bit = 1; B = I otherwise.

https://en.wikipedia.org/wiki/Division_algorithm

Consequences/Impacts

 Software patches. How?

* Significant impact on verification

* A marked increase in the use of formal verification and number theory in
hardware design

The AMD Phenom TLB Bug

Affected AMD quad-core Opteron and Phenom processors in 2007

Can cause random crashes

AMD gave two confirmed situations in real world usage:
e 1) Windows Vista 64-bit running SPEC CPU 2006
e 2) Xen Hypervisor running Windows XP and an unknown configuration of applications

Described in Erratum 298 as a cache coherence problem

Internal Graphics Mode [Disabled]

o Bug EXplanatIon x Onboard UGA output connect D-SUB/DVU
< UMA Frame Buffer Size Auto
Init Display First [PEG]
°
1_LE3 Surround View [Disabled]
UVirtualization [Disabled]
e Cache coherence Patch AMD TLB Erratum [Disabled]
AMD K8 Cool&Quiet control [Autol
e Exclusive caches Hard Disk Boot Priority [Press Enter]

First Boot Device [CDROM]
Second Boot Device [Hard Diskl
Third Boot Device [CDROM]
Boot Up Floppy Seek [Disabled]
Boot Up Num-Lock [On]

https://www.anandtech.com/show/2477/2

Errata 298

298 L2 Eviction May Occur During Processor Operation To Set
Accessed or Dirty Bit

Description

The processor operation to change the accessed or dirty bits of a page translation table entry in the L2
from Ob to 1b may not be atomic. A small window of time exists where other cached operations may
cause the stale page translation table entry to be installed in the L3 before the modified copy is
returned to the L2.

In addition, if a probe for this cache line occurs during this window of time, the processor may not set
the accessed or dirty bit and may corrupt data for an unrelated cached operation.

Potential Effect on System

One or more of the following events may occur:

* Machine check for an L3 protocol error. The MC4 status register (MSR0000 0410) is
B2000000_000BOCOFh or BA000000 000BOCOFh. The MC4 address register
(MSRO0000_0412) is 26h.

* Loss of coherency on a cache line containing a page translation table entry.
» Data corruption.
Suggested Workaround
BIOS should set MSRCO001_0015[3] (HWCR[TIbCacheDis]) to 1b and MSRC001_1023[1] to 1b.

In a multiprocessor platform, the workaround above should be applied to all processors regardless of
revision when an affected processor is present.

Fix Planned
Yes

https://www.amd.com/system/files/TechDocs/41322 10h_Rev_Gd.pdf

I AMD Nested Interrupts DOS

* Allowed a guest VM to fault in a way that would cause the CPU to
hang in a microcode infinite loop, allowing any VM to DoS its host.

AMDA
Revision Guide for AMD Family 15h Models 00h-OFh Processors 48063 Rev. 3.24 September 2014

704 Processor May Report Incorrect Instruction Pointer

Description

Under a highly specific and detailed set of internal timing conditions, the processor may store an incorrect
instruction pointer (rIP) while processing an interrupt or a debug trap exception (#DB).

Potential Effect on System

Unpredictable system behavior.
Suggested Workaround

Contact your AMD representative for information on a BIOS update.

Fix Planned

No fix planned

Intel Broken Hyper-Threading

e 2017: Intel Skylake and Kabylake, broken hyper-threading

* Errata:
* Short Loops Which Use AH/BH/CH/DH Registers May Cause Unpredictable System Behavior.

 Problem:

* Under complex micro-architectural conditions, short loops of less than 64 instructions that
use AH, BH, CH or DH registers as well as their corresponding wider register (e.g. RAX, EAX
or AX for AH) may cause unpredictable system behavior. This can only happen when both
logical processors on the same physical processor are active.

* Implication:
e Due to this erratum, the system may experience unpredictable system behavior.

Errata

8th and 9th Generation Intel®
Core™ P 3.2 Errata Summary Information

Table 4-3. Erratz
Specification Uj SPECS: A Lightweight Runtime Mechanism for ASPLOS’15

Supporting 8" (Protecting Software from Security-Critical Processor Bugs

S/H/U Platforn
ID

Supporting 9" Ge BO Matthew Hicks Cynthia Sturton Samuel T. King Jonathan M. Smith

:r ‘;Ces Z ors for S, e University of Michigan University of North Twitter, Inc. University of Pennsylvania

erres mdhicks@umich.edu Carolina at Chapel Hill sking@twitter.com jms@cis.upenn.edu

001 No Fix csturton@cs.unc.edu

November 201¢

Revision 002 ~ Abstract Catch All Catch Security- Low
0oz | Nosklx Bugs? Critical Bugs? Overhead?

Processor implementation errata remain a problem, and

worse, a subset of these bugs are security-critical. We classi- SW-only X X v
fied 7 years of errata from recent commercial processors to HW-only v v X
003 No Fix ynderstand the magnitude and severity of this problem, and SPECS X v v
found that of 301 errata analyzed, 28 are security-critical. SPECS+SW v/ v/ /
We propose the SECURITY-CRITICAL PROCESSOR ER-
004 No Fix RATA CATCHING SYSTEM (SPECS) as a low-overhead so- Table 1: The design space for catching processor bugs: existing software-

only approaches are limited, but practical; existing hardware-only ap-
proaches are powerful, but impractical; and SPECS, combined with ex-
isting software approaches, is both powerful and practical.

lution to this problem. SPECS employs a dynamic verifi-
cation strategy that is made lightweight by limiting protec-
tion to onlv security-critical processor state. As a proof-of-

I Design + Validation Process

: Pre-silicon N Post-silicon :
[Design } [Verification} [Fabrlcatlon} [Validation } [Production }

Functional Verification

- Directed (hand written)
- Random (auto generated)

Functional Formal
Operate on large designs Yes No
over 10M nand gates
Verification scheme Stimulus: Constraint driven exhaustive

testing

Designs

Full CPU, IP, SOC, etc.

Small blocks: Multiply,
Divide, CRC, Floating-point,
etc.

Development work

Testbench, stimulus,
reference models, etc

Lemmas, constraint, etc.

Power aware verification

Yes

No

From “David Kaplan: When hardware must just work”

Several Research Efforts

* End-to-End Verification of ARM Processors with ISA-Formal, CAV’'16

* Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip
(SoC) Verification

* https://princetonuniversity.github.io/isca22-ila-tutorial/

 Commercial Model Checking Tool: JasperGold

https://princetonuniversity.github.io/isca22-ila-tutorial/

Easy v.s. Hard to Find Bugs

Easy to find bugs Hard to find bugs
* Basic functional behavior * System level behavior
* Does this mode work? * Protocol violations
* Are exceptions correctly generated? * FIFO overruns/underruns
* Formal proofs * Multiple random events
* Is multiplier output correct? * 5 unlikely asynchronous events in a row
* Coverage holes * Long runtime events
* Can all exceptions be generated? e Statistically unlikely matches

° I i ?
Are all instructions executed? * Multiple loads where 20 address bits match

From “David Kaplan: When hardware must just work”

Hunting Hardware Bugs in the
Post-Meltdown Era

Meltdown

* We generally consider Meltdown as a bug (as oppose to Spectre)
* Should be easy to fix... But ...

e Meltdown -> Foreshadow -> MDS -> Zombie Load

SOMBIELOAD

* How to end this chain?
ATTACK

FORESHADOW

RETVRN OF THE LEAKING DEAD

I Meltdown

load kernel addr // trigger a page fault, deferred

load array[x*64]

I Foreshadow -- L1 Terminal Fault (L1DT)

X = load enclave addr // trigger a terminal fault
// data in L1
load array[x*64]

<
!

39 38 30 29 21 20 12 11

J7
» PML4E » PDPTE » PDE » PTE

CR3 ... | Page Frame=0x9a0 PTEbits... |P=0 |

Forshadow-NG

load addr

load array[x*64]

CPU micro-architecture

@ A,
~~~~~~~~~~~~~~~~~~~ >{ Pass to out-of-order_‘Jﬂ &ﬁ

Abort page

// incur a terminal fault
// 1f data in L1

Perform Address Translation using FSM

v
Prepare TLB entry

¥

Executing
enclave
code?

liNo

Yes

Yes

Y

Replace TLB
No | entry address

with abort No
M

Physical
address
in PRM?

Yes
page

Insert new entry J
in TLB

/irtlial addrea<



Microarchitecture Data Sampling (MDS)

* Exploiting internal microarch structures:
 Store buffer, Load port, Fill buffers

* RIDL: Rogue In-Flight Data Load
* Fallout: Leaking Data on Meltdown-resistant CPUs
 ZombielLoad: Cross-Privilege-Boundary Data Sampling

https.//www.intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html



RIDL Explained

* The processor forwards in-flight data from the LFBs (with no
addressing restrictions)

Attacker Process

Secret

X = load NULL //lnvalld or FLUSH:LLELOAD

Buffer

Victim Process ﬂ
Dependent

//unmapped page :
load array[x*64] i Lﬁd

Speculative
Load

<
|

Fig. 2: An overview of a RIDL-class attack.



Meltdown -> Foreshadow ->

MDS -> Zombie Load




Consider Software Bugs Hunting/Fixing

* Approach 1: Hire a lot of experts and stare at the code

* Basically Intel was on it in the last few years without showing
the code

* Black-box hacking

* Approach 2: Test suite, but need to be updated. And how
to generate test cases?
* Fuzzing
* Symbolic Execution => generally require grey-box or white-box




Fuzzing History

 Random: “cat /dev/urandom | program”

* Class assignment in “Advanced Operating Systems” at University of Wisconsin
(1988)

e Generation: Write a BNF spec -> introduce anomalies
 PROTOS from OUSPG (2002) & Block-based Fuzzing from Dave Aitel (2002)

* Mutation: Assemble valid input corpus -> introduce anomalies
* Eg. radamsa, zzuf, etc

* Apply random mutations to well-formed inputs and observe the
results



Fuzzing In A Nutshell

* Automatic generate test examples

* Crash is generated by assertions/specifications

° Simp|e yet effective Input Run Program Crash
* Industry standard

From Riding the Fuzzing Hype Train (RAID'21 Keynote)



Types of Fuzzing

e Blackbox

 Whitebox

* Greybox

int obscure(int x, int y)

{
if (x==hash(y))
error();
return 0;

A

Collected coverage:

612]6joj2]1]7

From Blackbox Fuzzing to Whitebox Fuzzing towards Verification; Patrice Godefroid Microsoft Research



Crashes != Unique Bugs

* The highly-stochastic nature of fuzzing means that PoCs commonly
exercise many program behaviors that are orthogonal to the crash’s
underlying root cause.

* Examples of misclassification when detecting memory corruption bugs
* 1. duplicate bugs crash at different addresses, e.g., invalid vptr
» 2. different bugs crash at same function, e.g., memcpy

Igor: Crash Deduplication Through Root-Cause Clustering; Jiang et al; CCS’21



Idea: Fuzzing for Microarch Vulnerabilities

* What is the input? Instruction sequences
* What is the specification? Timing interference
* Coverage? No idea

* Actual Bug?



I The Micro-benchmark Approach ()

Integer instructions

4. Instruction tables

Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD

and VIA CPUs

By Agner Fog. Technical University of Denmark.
Copyright © 1996 — 2016. Last updated 2016-01-09.

Instruction Operands Ops |Latency [Reciprocal [Execution |Notes
throughput |unit

Move instructions

MOV i 5 1/3 ALU

MOV r,i 1/3 ALU
Any addr. mode.
Add 1 clk if code
segment base #

MOV r8,m8 1 4 1/2 ALU, AGU [0




I The Micro-benchmark Approach (ll)

5 Mar 2019

uops.info: Characterizing Latency, Throughput, and
Port Usage of Instructions on Intel Microarchitectures

Andreas Abel and Jan Reineke
{abel,reineke}@cs.uni-saarland.de
Saarland University
Saarland Informatics Campus
Saarbriicken, Germany

Abstract

Modern microarchitectures are some of the world’s most
complex man-made systems. As a consequence, it is increas-
ingly difficult to predict, explain, let alone optimize the per-
formance of software running on such microarchitectures.
As a basis for performance predictions and optimizations,
we would need faithful models of their behavior, which are,
unfortunately, seldom available.

In this paper, we present the design and implementation

1 Introduction

Developing tools that predict, explain, or even optimize the
performance of software is challenging due to the complexity
of today’s microarchitectures. Unfortunately, this challenge
is exacerbated by the lack of a precise documentation of
their behavior. While the high-level structure of modern mi-
croarchitectures is well-known and stable across multiple
generations, lower-level aspects may differ considerably be-
tween microarchitecture generations and are generally not



The Micro-benchmark Approach (lil)

Apple M1 Microarchitecture Research by Dougall Johnson

Firestorm: Overview | Base Instructions | SIMD and FP Instructions
Icestorm: QOverview | Base Instructions | SIMD and FP Instructions

Firestorm Base Instructions

LAT TP Retire Int Mem FP Units (ports)
» aDpcC 1 0.333 1 1 - - ul-3
» aDcs 1 0333 1 1 - - ul-3
» ADD (extend) 2 0.333 1 2 - - 2*ul-6
» ADD 1 0.167 1 1 - - ul-6
» ADD (shift) 2 0333 1 2 - - 2*ul-6



Fuzzing for Automatic Bug Detection (l)

ABSynthe: Automatic Blackbox Side-channel
Synthesis on Commodity Microarchitectures

Ben Gras*T, Cristiano Giuffrida*, Michael Kurth*, Herbert Bos*, and Kaveh Razavi*

*Vrije Universiteit Amsterdam

Abstract—The past decade has seen a plethora of side-channel
attacks on various CPU components. Each new attack typically
follows a whitebox analysis approach, which involves (i) identify-

.....

TIntel Corporation

cryptographic keys) by examining changes made by a victim’s
execution to the state of shared microarchitectural components
such as caches [1, 2, 3, 4, 5], cache directories [6], TLBs [7],
and branch predictors [8, 9]. Such attacks are typically based



Fuzzing for Automatic Bug Detection (ll)

Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis

Daniel Moghimi1 , Moritz Lippz, Berk Sunar!, and Michael Schwarz?

I'Worcester Polytechnic Institute, Worcester, MA, USA
2Graz University of Technology, Graz, Styria, Austria

Abstract

In May 2019, a new class of transient execution attack based
on Meltdown called microarchitectural data sampling (MDS),
was disclosed. MDS enables adversaries to leak secrets across
security domains by collecting data from shared CPU re-

conrecee ench ac data cache fill hnffere and <tnre hinfferc

tracting secrets that are only visible in transient states within
the CPU [11]. Compared to previous side-channel attacks, the
significant impact of transient-execution attacks is that they
can leak actual data bits instead of access patterns.

Spectre attacks [21, 34, 35, 37, 40] miss-train branch pre-
dictors into executing control paths that might not be taken



Fuzzing for Automatic Bug Detection (lll)

7 Jun 2021

ARTIFACT
EVALUATED

Osiris: Automated Discovery of @8 *socirion

Microarchitectural Side Channels

Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, Christian Rossow
CISPA Helmholtz Center for Information Security

Abstract

In the last years, a series of side channels have been dis-
covered on CPUs. These side channels have been used in
powerful attacks, e.g., on cryptographic implementations, or

an hinildins hlanlra 1n teanaciant avanistinan attanl-a annah as Caan

Side channels often arise from abstraction and optimiza-
tion [79]. For example, due to the internal complexity of
modern CPUs, the actual implementation, i.e., the microarchi-
tecture, is abstracted into the documented architecture. This
abstraction also enables CPU vendors to introduce transpar-



Fuzzing for Automatic Bug Detection (V)

8 Feb 2022

Revizor: Testing Black-Box CPUs against Speculation Contracts

Oleksii Oleksenko* Boris Kopf Mark Silberstein
Christof Fetzer Microsoft Research Technion
TU Dresden Cambridge, UK Haifa, Israel
Dresden, Germany
ABSTRACT For software developers, contracts are a foundation for microar-

Speculative vulnerabilities such as Spectre and Meltdown expose
speculative execution state that can be exploited to leak informa-
tion across security domains via side-channels. Such vulnerabilities
often stay undetected for a long time as we lack the tools for sys-
tematic testing of CPUs to find them.

In this paper, we propose an approach to automatically detect
microarchitectural information leakage in commercial black-box
CPUs. We build on speculation contracts, which we employ to spec-
ify the permitted side effects of program execution on the CPU’s
microarchitectural state. We propose a Model-based Relational Test-
ing (MRT) technique to empirically assess the CPU compliance with

these snecifications.

chitecturally secure programming: they spell out the assumptions
that are required for checking that mitigations are effective and
code is free of leaks. For example, a recent survey [9] classifies exist-
ing tools for detecting speculative vulnerabilities in the language of
contracts. For hardware developers, contracts can provide a target
specification that describes the permitted microarchitectural effects
of the CPU’s operations, without putting further constraints on
the hardware implementation. Thus, contracts hold the promise
to achieve for speculative vulnerabilities what consistency models
have provided for memory consistency [3].

Despite the contracts’ potential, so far they have only been used
for establishing security guarantees of small white-box models



An Example: Orisis

Reset Seq. Trigger Seq.

m Trigger Seq. [\,

Reset Seq.

Figure 1: State machine representing different microarchitec-
tural states and transitions between them.

______________

G 8 0O

Cold path S

Seqreset

#
!
1R

Seqreser Seqirigger Seqmeasure ;. Hot path S

Figure 3: The execution stage receives the triple and executes
Seqmeasr e (COld Path) and Seqtriggen Seqmeasure (hOt Path) af-
ter Seq,. .. Timing differences for the two paths are reported.

Potential
Challenges?



Challenges and Potential Solutions

* How to ensure reset works properly?
* =>randomize the ordering of testing the triples. Old, hot ordering.

 How about noise? Frequency, prefetcher, etc.
* => Repeat

* Applicability to transient execution?
e Put the trigger in retpoline => perfect mis-prediction

* The majority of what they found are known attacks



I Some Findings

* A faster FLUSH+RELOAD

* This MOVNTDQ instruction with a non-temporal hint also evicts the accessed
memory address from the cache. A later load will be faster, potentially due to
coherence protocol.

- reset: "MOVNTDQ"

- trigger: flush Practical uses?
- measure: load



Takeaways

* There are a good number of hardware bugs
* Testing v.s. Formal verification v.s. Fuzzing

* Difficult to fix hardware bugs, e.g., Meltdown-style
* An example of fuzzing to automatically detect vulnerabilities



