Secure Processors In Industry

Mengjia Yan
Spring 2022

Based on slides from Christopher W. Fletcher and Jakub Szefer

I)

CSAIL

Reminder

* Sign up Piazza

* Recitation
* Room: 36-153
* Time: 1-2 pm Friday
e This Friday: Tutorial on C, Assembly

* HotCRP and paper presentations

 Demo next Monday: paper bidding

* Reviews: Signup if you are interested in contributing reviews and reading others’
reviews

* Presentation: Send a private Piazza post if you want to do presentation in pairs

6.888 - L2 Secure Processors

Review #3H & _ 30 Sep 2020

Interest Reading Experience

2. Some interest 2. Itis an ok paper. (The paper is somewhat
interesting or | learned something from
reading this paper)

Paper summary

Speculative Taint Tracking is a proposed technique that prevents an entire class of data leakage via
covert channels - specifically those that rely on misspeculations that can access data and transmit
over a transient covert channel. This technique relies on tracking when instructions read data
speculatively and taints said data, then doesn't allow any future operation that can possibly leak
said data to complete until it is known that the original instruction is no longer speculative.

Strengths
— Very clear breakdown of what steps need to be taken to eliminate implicit channels
- Seemingly comprehensive coverage of the stated scope
- Interesting find of the implicit channels available to attackers.

Weaknesses (hidden from authors)

— Figure 5 was really confusing to me because | thought that section 5.1 was the only section
referencing it and thus | didn't understand how b or ¢ would work; but then after giving up
on trying to figure it out and going onto the next page | realized there was more explanation.
Some signposting alerting to further explanation later on would have helped me a lot.

- Is an 8% or 14% slowdown actually "acceptable"? While its clearly better than some of the
alternatives, they are making this claim without much backing.

Questions for discussion
— | am still confused by the difference between the spectre threat model and the futuristic
model - what is the spectre threat model not including that the futuristic is?
- Is an 8% or 14% slowdown actually "acceptable"?
- Is there a way to use this for only certain processes, so that the slowdown is only
sometimes relevant? Or does that defeat the whole purpose?

6.888 - L2 Secure Processors

I Outline

* Some Basic Crypto

e Case Studies of Secure Processors

1969

Tenex supports full

1967
Multics OS introduces
protection rings and invents virtual memory

the notion of privileges

1961
Burroughs B5000
introduces a tag bit to

distinguish control words

from numeric words

1964
IBM System/360 uses 4-bit
memory protection keys

1969
Burroughs B6500 extends
tags to be three bits longs

1970
IBM System/370 supports
alock & key mechanism

for memory accesses

1980

Berkeley RISC Stanford MIPS
project begins

1979

kernel code to share
same address space in

RSTS/E OS

1978

DEC allows user and

1981

project beg

Intel 8086 introduced.

Includes notion of

privilege rings

1981

Intel IAPX 432 introduces
hardware and microcode support
for object-oriented programming
and capability-based addessing

ins

2012
Intel adds support for SMAP
(Supervisor Mode Access Prevention)

2005

Intel and AMD add hardware
support for virtualization
2011
Intel adds support for SMEP

(Supervisor Mode Execution Prevention)

2002

IBM ThinkPad T30 adheres
to TPM (Trusted Platform
Module) standard, giving

hardware support for

attestation and key storage

I

1997

IBM 4758 introduces hardware

security module for

2010

Intel adds hardware-

cryptographic computation

2000
AMD adds support for NX "no-
execute" bit in x86-64 ISA

2002

ARM introduces TrustZone, a Trusted Execution

accelerated support

for AES encryption

2012

Intel adds support

for random number
Environment (TEE) intended for isolated execution generation with the

and DRM (Digital Rights Management) support

Figure 1: Sixty years of hardware support for security

6.888 - L2 Secure Processors

2015
Intel introduces MPX (Memory
[Protection) ISA extensions to
support runtime pointer bounds
checking
2016

AMD provides hardware

accelerated virtual machine
encryption with SEV (Secure

Encryption Virtualization)

2016
AMD introduces SME (Secure
Memory Encryption),
hardware accelerated support
for encrypt system memory

2015

Intel introduces SGX (Software
Guard) ISA extensions, which
give users the ability to execute
code in secure "enclaves”

RDRAND instruction

Security Goals

* Confidentiality
* Integrity
* |dentification

* Availability

Example: Lost device

6.888 - L2 Secure Processors

Symmetric Cryptography + One-time-pad (OTP)

C: cipher text

p: plain text
!r' k: key
Secret Same Key Secret
Key Key
e e A4$h/*L@9. i de_F enc () .
s e D | —— for i from range(@, L):
I— > ecryption . . g)
— |G |- |G| = TR
—”

def dec():
for i from range(o, L):
p[i] = c[i] * k[i]

Plain Text Cipher Text Plain Text

What if we use the key for multiple times?
How about encrypting arbitrary length message? Any problems?

6.888 - L2 Secure Processors

Block ciphers (e.g., DES, AES)

* Divide data in blocks and encrypt/decrypt each block
* AES block size can be 128, 192, 256 bits ECB IS NOT

RECOMMENDED

Plaintext Plaintext Plaintext
[HENEENEEEREEN [HENNENEEEREER (HENNENEEEERER
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
[IENEENENEREER [HENEENEEERRER (HENNENEEEERER
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

Original image Encrypted using ECB mode Modes other than ECB result in
pseudo-randomness

What if the attacker sees P[i] = P[j], where i and j are block id?

6.888 - L2 Secure Processors 7

Block ciphers (e.g., DES, AES) cont.

Plaintext Plaintext Plaintext Nonce Counter Nonce Counter Nonce Counter
(HENENNNNENNEE [INNEENEENEEEE LITTTTTTTTTTT] c59bcf35.. 00000000 c59bcf35.. 00000001 c59bcf35.. 00000002
Initialization Vector (IV) ITTTITTITTTIT] [IITTTITTIITTTIT] [ITTTITTITTTIT]
I rIirr—
block Cipher ok cion ok cion Key — > block cipher block cipher block cipher
Key —> _ Key —> pher Key —| Plock cipher encryption encryption encryption
encryption encryption encryption
l Plaintext ——— Plaintext ——> Plaintext ———
i & ITTTITTTITTTT LOITTITTTITTTT LIITTITTITTITITT
III(I:ilplhlelrtleIXLlll I”éilp]hle]rtle[xlt”l I”éilplhlelrt[elxlt]” IIII.IIIIIIIIII IIII.IIIIIIIIII IIII'IIIIIIIIII
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

Counter (CTR) mode encryption

Compare the two schemes:
1) What if a block is tampered or a block is lost?
2) Which one has potential higher performance if you have multiple computation units?

When applying AES to encrypt memory, what can be used as Counter?

6.888 - L2 Secure Processors 8

AES Implementation

* Goal: "approximate”
pseudorandom permutations

10, 12, 14 rounds depending on key
Size

 AddRoundKey: One-time pad using
round key

SubBytes: Sbox lookup

Side channel vulnerability.
Will talk in future lectures

ENCRYPTION

\

y

LAST ROUND

o

.,

o

PLAINTEXT

l

AddRoundKey

SubBytes

v

ShiftRows

v

MixColumns

v

AddRoundKey

SubBytes

Y

ShiftRows

Y

AddRoundKey

3
3

3

3

3

3

3

: 3
- -
. -
. i

..

CIPHERTEXT

6.888 - L2 Secure Processors

X Nr-1

DECRYPTION

LAST ROUND

.,

o

PLAINTEXT

--

o

o *,

. H

< .

L .
.
.
.

AddRoundKey

i

InvSubBytes

i

InvShiftRows

B

03

AddRoundKey

f

InvMixColumns

f

InvSubBytes

f

InvShiftRows

AddRoundKey

T

CIPHERTEXT

X Nr-1

AES-NI Instruction Set

* Short for Advanced Encryption Standard New Instructions

* New instruction + Hardware acceleration

* Both Intel and AMD released supported CPUs around 2010/2011

Instruction Description

AESENC This instruction performs a single round of encryption. The instruction combines
the four steps of the AES algorithm - ShiftRows, SubBytes, MixColumns &
AddRoundKey into a single instruction.

AESENCLAST Instruction for the last round of encryption. Combines the ShiftRows, SubBytes, &
AddRoundKey steps into one instruction.

AESDEC Instruction for a single round of decryption. This combines the four steps of AES -
InvShiftRows, InvSubBytes, InvMixColumns, AddRoundKey into a single instruction

AESDECLAST Performs last round of decryption. It combines InvShiftRows, InvSubBytes,
AddRoundKey into one instruction.

AESKEYGENASSIST This is used for generating the round keys used for encryption.

AESIMC This is used for converting the encryption round keys to a form usable for
decryption using the Equivalent Inverse Cipher.

6.888 - L2 Secure Processors

10

Now back to lost devices

* Is password login sufficient?

* Where encryption should be used?

* Where to store secret keys?

6.888 - L2 Secure Processors

Processor Chip (socket)

core core
L1/L2 L1/L2
LLC

Memory (DRAM)

Non-volatile
storage device

11

Is Encrypting Disk Sufficient?

* Cold boot attacks to circumvent
software-based disk encryption

* An example:
https://www.youtube.com/watch?v=vWHDqBV9yGc

* How to deal with it?

e Data remanence in SRAM and DRAM

6.888 - L2 Secure Processors

Processor Chip (socket)

core core
L1/L2 L1/L2

LLC

Memory (DRAM)

Non-volatile
storage device

12

I Physical Attack Examples

. @Gmit.edu
¥BOX LDT Tap Tx bunryge
3 *
sersseterT1TITIsIIN

-.‘003'.-

Tap board used to intercept data transfer over Xbox's HyperTransport bus IC analysis. Extract information from a Flash ROM storage cell
from http://www.xenatera.com/bunnie/proj/anatak/xboxmod.html from http://testequipmentcanada.com/VoltageContrastPaper.html

6.888 - L2 Secure Processors 13

Physical Tamper Resistance

* Standalone security modules to protect cryptographic keys and
personal identification numbers (PINs)

* A history lesson of physical security by IBM 4758

Tampering Detection

Robust metal enclosures.
Open the lid = disconnect power supply

}

Drill through the lid

}

Photocells and tilt devices

6.888 -

Tampering Evident

“potting" the device in a block of epoxy resin

l

Patience: Scrape away the epoxy

l

tamper-sensing barriers:
nichrome wire wound around the device

L2 Secure Processors

14

IBM 4758 Secure Co-Processor

* Memory remanence

e constant movement of values from place
to place

e Cold boot

* detects changes of temperature

* X-ray

* a radiation sensor
Photo of IBM 4758 Cryptographic Coprocessor (courtesy of Steve Weingart)

from https://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html|

* Power side channels

* Solid aluminium shielding and a low-

pass filter (a Fa raday cage) Expensive. Other secure processors only
focus on a limited set of physical attacks.

6.888 - L2 Secure Processors 15

I Trusted Platform Module (TPM)

e “Commoditized IBM 4758”

e Standard LPC interface — attaches to
commodity motherboards

* Weaker computation capability

) Platform Attestation
» Nosnt-Volatlle Configuration Identity
§ s Register (PCR) Key (AIK)
* Uses:
* Disk encryption and password protection : ——
. . . . o
 Verify platform integrity (firmware+QS) umber W engine | Generation | Enaine

Trusted Platform Module (TPM)

Tamper-Protected Packaging

6.888 - L2 Secure Processors 16

Integrity Verification

Hash(m) = h

T~

Hash value (length
depends on algorithm)

Message (long)

Use as fingerprints
* One-way hash fingerp

* Practically infeasible to invert, Difficult to find collision

e Avalanche effect
* “Bob Smith got an A+ in ELE386 in Spring 2005”—>01eace851b72386¢c46
* “Bob Smith got an B+ in ELE386 in Spring 2005”—>936f8991c111f2cefaw

6.888 - L2 Secure Processors 17

Boot Process (UEFI)

Root of trust

Security (SEC) - Cache-as-RAM
meas/ures microcode
—, y firmware
Pre-EFI Initialization (PEI) < DRAM Initialized
—
measures \
k»
Driver eXecution Environment (DXE)
P
measures
_» Y
Boot Device Selection (BDS)
—
JNEASHIES: ~r=-rrmcrececcecsnmcsme e ————————————————————————
— y bootloader
Transient System Load (TSL)
7~ -
FIEASHNES! oo crrmcossmiaef st i i
N, y 0S

Run Time (RT)

How to perform the measurement?

ors in Industry

Processor Chip (socket)

core core
L1/L2 L1/L2
LLC
Memory (DRAM)
ME
Non-volatile (management
storage device engine)
18

Secure Boot using TPM

e Static root of trust for measurement (SRTM)

0 (zero)

TPM MR
after reboot

Boot Loader

v
SHA-1()
sent to TPM
v v OS Kernel
SHA-1() 7
TPM MR when SHA-1()
boot loader T
executes sent to TPM
i v Kernel module
SHA-1() v
TPM MR when SHMI()
OS kernel sent to TPM
executes 1 v
SHA-1()
TPM MR when

PCR: platform configuration register

Kernel Module executes

6.888 - L2 Secure Processors

TPM + firmware 2. Report (extend)

l 3. load

1. Measure
(hash)

Boot Loader

l

OS kernel

!

Compared to expected values locally or
submitted to a remote attestor.

19

Security Vulnerabilities of Using TPM

* Vulnerable to bus sniffing attacks 2. Report (extend)

TPM + firmware

l 3. load
* TPM Reset attacks

Boot Loader 1. Measure
e SW reports hash values l (hash)
OS kernel

* Bugs in the trusted software

!

Han et al. A Bad Dream: Subverting Trusted Platform Module While You Are Sleeping. Usenix Security’18
Wojtczuk et al. Attacking Intel TXT® via SINIT code execution hijacking. 2011

6.888 - L2 Secure Processors 20

I Open-source Choice: Google Titan

PCH /BMC

Storage and
networking
subsystem

Reset and
power control

Memory
subsystem

from https://www.hotchips.org/hc30/1conf/1.14_Google Titan _GoogleFinalTitanHotChips2018.pdf

6.888 - L2 Secure Processors 21

Identification —
Public Key Cryptography (e.g., RSA, EC)

* A pair of keys:
* Private key (K,,; — kept as secret); Public key (K, — safe to release publicly) r

* Encryption:
* Encrypt(plaintext, K, ,) = ciphertext
* Decrypt(ciphertext, K,,;) = plaintext

. . . Mail box is public;
* Digital signatures: Box key is private

* Proof that msg comes from whoever owns private key corresponding to K,,,,
e Sign(msg):

* h=Hash(msg); signature = Encrypt(h, K,;)

* Return {signature, msg}
e Verify:

* Decrypt(signature, K,,) ?= Hash(msg)

6.888 - L2 Secure Processors 22

I Public key infrastructures (PKils)

* Bind public keys with identities
-> website, chip

6.888 - L2 Secure Processors 23

I Platform Attestation

* Defend against replay attack: Freshness

Processor Chip
(w/ BIOS, OS, Apps)

TPM

sign

Measurement

\ 4

6.888 - L2 Secure Processors

m KpUb

Verifier

24

I Platform Attestation

* Need public key infrastructure

Works as Certificate Agent

Procdssor Chip
(w/ BIQS, OS, Apps)

TRM

sign

v

. Chip Manufactory |

RK

Root Key
pri RI(pub

J

AIK,;

Measurement

+ nonce

sign

Attestation

4

6.888 - L2 Secure Processors

Verifier

.

\’

pub

25

Identity Key

So Far

Ring 3
App

Ring 0
Host OS

SMM

Hardware

The trend: shrink TCB.
Why?

BN

Ring 3

App

App
Ring 0
Guest OS Guest OS

| Hypervisor

SMM (firmware)

Hardware

6.888 - L2 Secure Processors

Shrink Trusted Computing Base (TCB)

enclave

Ring 3 Ring 3 App / Ring 3
A

App

Ring 0 . Ring 0 Ring 0
Guest OS Ring 3 App Guest OS Guest OS

Ring -1 | Hypervisor Ring -1 | Hypervisor | Ring -1 | Hypervisor |
Ring 0

Ring -2 Guest OS Ring -2 | Ring -2 |

m m m m

Arm TrustZone Intel SGX AMD SEV

6.888 - L2 Secure Processors 27

Next Lecture:
Side Channel Introduction

I)

CCCCC

