Covert and Side Channels

Mengjia Yan Spring 2022

Based on slides from Christopher W. Fletcher

Before We Start

- Recitation Prize
- HotCRP Demo
 - Review submission interface
 - Bid papers
- Announce 3 Talks

What is Covert and Side Channel?

- Gather information by measuring or exploiting indirect effects of the system or its hardware -- rather than targeting the program or its code directly.
- Covert channel:
 - Intended communication between two or more security parties
- Side channel:
 - Unintended communication between two or more security parties
- In both cases:
 - Communication should not be possible, following system semantics
 - The communication medium is not designed to be a communication channel

Side Channels Are Almost Everywhere

Daily Life Examples

- Acoustic side channels
 - Monitor keystrokes
 - You only need: a cheap microphone + an ML model
- Network traffic contention side channel
 - If you want to be an active attacker, try stress test

"Hear" The Screen

Genkin et. al. Synesthesia: Detecting Screen Content via Remote Acoustic Side Channels. S&P'19

"Hear" The Screen

(A) is the LCD panel, (B) is the screen's digital logic and image rendering board and, (C) is the screen's power supply board.

Network Side Channels

- Website Fingerprinting
- Response dependent:
 - iSideWith.com
- Real-time feedback:
 - Google Search auto-complete

Lescisin et. al. Tools for Active and Passive Network Side-Channel Detection for Web Applications. WOOT'18 Cai et. al. Touching from a distance: Website fingerprinting attacks and defenses. CCS'12.

Physical v.s. Timing v.s. uArch Channel

• What can the adversary observe?

Attacker requires measurement equipment \rightarrow physical access

Power Analysis

Victim Application: RSA

Square-and-multiply based exponentiation

```
Input : base b, modulo m, exponent e = (e_{n-1} \dots e_0)_2
Output: b<sup>e</sup> mod m
r = 1
for i = n−1 down to 0 do
     r = sqr(r)
     r = mod(r,m)
     if <u>e</u>; == 1 then
         r = mul(r,b)
         r = mod(r,m)
     end
end
return r
```

Power Analysis

- Various signal processing techniques to de-noise.
- More advanced: differential power analysis (DPA)

Benign Usage: Non-intrusive Software Monitoring

- How to efficiently monitor application for anomaly detection?
- EM side channel can trace back to Van Eck phreaking in 1985

Sehatbakhsh et al. Spectral Profiling: Observer-Effect-Free Profiling by Monitoring EM Emanations. MICRO'16 Van Eck phreaking https://en.wikipedia.org/wiki/Van_Eck_phreaking

What can you do with these channels?

- Violate privilege boundaries
 - Inter-process communication
 - Infer an application's secret
- (Semi-Invasive) application profiling
- What makes it more threatening compared to traditional software or physical attacks?
 - Stealthy. Sophisticated mechanisms needed to detect channel
 - Usually no permanent indication one has been exploited

Physical v.s. Timing v.s. uArch Channel

• What can the adversary observe?

Attacker requires measurement equipment \rightarrow physical access

Attacker may be remote (e.g., over an internet connection)

Victim Application: AES

• SubBytes:
 S[i] = Ttable[S[i]]

Physical v.s. Timing v.s. uArch Channel

• What can the adversary observe?

Attacker requires measurement equipment \rightarrow physical access

Attacker may be remote (e.g., over an internet connection)

Attacker may be remote, or be co-located

uArch Side Channels

Recap: Process Isolation

19

Inter-process communication

- File
- Socket
- Pipe

•

• Shared memory (shm in Linux)

All of these communication approaches are monitored by OS.

Normal Cross-process Communication

```
include <socket.h>
void send(bit msg) {
   socket.send(msg);
}
```

```
bit recv() {
    return socket.recv(msg);
```

]

How to communication without letting OS know?

--> Use HW contention

Covert Channels 101: Through the Page Fault

Blackboard: page fault, on-demand paging

Covert Channels 101: Through the Page Fault

Another Example of Using Caches

Potential Covert Channel Medium?

- Functional units inside the pipeline/core
- Main memory
- Network interface card (NIC)
- Hard disk drive
- GPUs
- PCIe bus

The Memory Hierarchy

- L1, L2
 - Shared by threads on the same core
- LLC:
 - Shared by threads on different cores
- DRAM row buffer:
 - Shared by

Flush+Reload in the Cache

• On blackboard: page deduplication, clflush

Protocol 101: Prime+Probe in the Cache

Prime+Probe

Prime+Probe – Send "1"

Prime+Probe – Receive "1"

Receive "1" = 8 accesses \rightarrow 1 miss

6.888 - L3 Covert and Side Channels

Prime+Probe – Send "0"

Prime+Probe – Receive "0"

Receive "0" = 8 accesses \rightarrow 0 miss

A Complete Protocol -- Synchronization

Sender & receiver need to perform an window alignment at the start

Bandwidth

Error-free bitrate of send() \rightarrow recv()

Depends on what hardware structure is used to build the channel.

- RDRAND unit:
- MemBus/AES-NI contention:
- LLC:
- Various structures on GPGPU:

From Covert \rightarrow Side Channels

6.888 - L3 Covert and Side Channels

Summary

• What can the adversary observe?

Attacker requires measurement equipment \rightarrow physical access

Attacker may be remote (e.g., over an internet connection)

Attacker may be remote, or be co-located

Micro-arch Side Channel Generalization

Next Lecture: Practical Cache Side Channel Examples

