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Reminder

• Lab 1 will be out TODAY

• Fill in paper preference on HotCRP by Friday
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Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

# ways
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Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

Wait

Access

# ways
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Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

Wait

Access

# ways

Receive “1” = 8 accesses à 1 miss

Probe
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Analogy: Bucket/Ball

Shared Cache

Sender Receiver

Cache Set

# ways

Sender’s address Receiver’s address

Each cache set is a bucket 
that can hold 8 balls

How to find addresses that 
map to the same set?
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Review Cache and Address Translation

On blackboard
• Cache
• Data + tag, directly mapped, N-way associative

• Page translation
• Page table
• The case when the same virtual address in different processes map to 

different physical addresses
• The case when multiple virtual addresses map to the same physical address

• Hierarchical page tables and TLB
• Cache and virtual address
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00000000000000000000000011101000

Direct-Mapped Caches

§ Each word in memory maps into a single cache line
§ Access (for cache with 2W lines):

§ Index into cache with W address bits (the index bits)
§ Read out valid bit, tag, and data
§ If valid bit == 1 and tag matches upper address bits, HIT

§ Example 8-line
direct-mapped cache: Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte 
offset
bits =? HIT

0
1
2
3
4
5
6
7
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N-way Set-Associative Cache

§ Use multiple direct-mapped caches in parallel to reduce  
conflict misses
§ Nomenclature:

§ # Rows = # Sets
§ # Columns = # Ways
§ Set size = #ways

= “set associativity”
(e.g., 4-way à 4 lines/set)

§ Each address maps to
only one set, but can be
in any way within the set

§ Tags from all ways
are checked in parallel

§ Fully-associative cache: Extreme case with a single set and as 
many ways as cache lines

TagData TagDataTagData TagData

8 
se

ts

4 ways

=? =? =? =?

INCOMING  ADDRESS
IndexTag

SET

WAY
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Address Translation (4KB page)

system’s view
Physical Address (32bit):

Programmer’s view
Virtual Address (48bit):

48                                                        12 11                                        0

Virtual page number Page offset
(12 bits)

31                                            12 11                                        0

physical page number Page offset
(12 bits)

Page 
Table Copy 

page offset
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MIT 6.823 Spring 2020

Hierarchical Page Table

L04-82February 9, 2022

Level 1 
Page Table

Level 2
Page Tables

Data Pages

page in primary memory 
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2   offset
01112212231

10-bit
L1 index

10-bit 
L2 index
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Translation Lookaside Buffer (TLB)

April 27, 2021

Problem: Address translation is very expensive!
Each reference requires accessing page table

Solution: Cache translations in TLB
TLB hit Þ Single-cycle translation
TLB miss Þ Access page table to refill TLB 

VPN   offset

V R W D    tag        PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

fault?
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Using Caches with Virtual Memory

Cache TLBCPU
Main 

memory

Physically-Addressed
Cache

•Avoids stale cache data 
after context switch

•SLOW: Virtualàphysical
translation before every 
cache access

Virtually-Addressed
Cache

•FAST: No virtualàphysical
translation on cache hits

•Problem: Must flush cache 
after context switch

CacheTLBCPU
Main 

memory
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Which one is better?

Can we do even better?

Hint: some part of the virtual address and physical address are the same



Best of Both Worlds: Virtually-Indexed, 
Physically-Tagged Cache (VIPT)

OBSERVATION: If cache index bits are a subset of page
offset bits, tag access in a physical cache can be done in 
parallel with TLB access. Tag from cache is compared with 
physical page address from TLB to determine hit/miss.

Problem: Limits # of bits of cache index → can only increase 
cache capacity by increasing associativity!

Cache

CPU
Main
memory

TLB

Cache index comes entirely 
from address bits in page 
offset – don’t need to wait 
for TLB to start cache lookup!

April 27, 2021 MIT 6.004 Spring 2021 L18-21
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Find Conflicting Addressing From Virtual Address

Virtual Address (48bit):

48                                                        12 11                                        0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31                                            12 11                                        0

physical page number Page offset
(12 bits)

Line offset
(6 bits)

Index
(3 bits)

TagCache mapping:
(8 sets)

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

2 
bit

Not controllable via 
virtual address.
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w/ Huge Pages

• Huge page size: 2MB or 1GB
• Number of bits for page offset?

Virtual Address :
4KB page

48                                                        12 11                                        0

Virtual page number Page offset
(12 bits)

48 21 20                                                                 0

Virtual page number Page offset
(21 bits)

Virtual Address :
2MB page

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)
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Micro-arch Side Channel Generalization

Hardware 
resourceSender Receiver

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (send ‘1’)
Use resource

else
idle

if (t2 – t1 > THRESH) 
read ‘1’

else 
read ‘0’
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From Covert à Side Channels

Hardware 
resource

Victim Attacker

if (send ‘1’)
Use resource

else
idle

Covert channel:
if (secret)
Use resource

else
idle

Side channel: t1 = rdtsc()
Use resource
t2 = rdtsc()

if (t2 – t1 > THRESH) 
read ‘1’

else 
read ‘0’
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Breaking RSA
• A real-world example: Square-and-Multiply Exponentiation

for i = n-1 to 0 do
r = sqr(r) 

r  = r mod n
if ei == 1 then

r = mul(r, b)

r  = r mod n
end 

end

What you generally see in papers:
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The Multiply Function
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Raw Trace

Access latencies measured in the probe operation in Prime+Probe. 
A sequence of “01010111011001” can be deduced as part of the exponent.

6.888 L4 - Practical Cache Attacks 21



More Advanced Cache Attacks
You may not need the following tips for Lab 1
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Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of 

cache to reduce miss penalty

L1-I/D cache L2 cache L3 cache (LLC) DRAM

Size 32KB 256KB 1MB/core 16GB

Associativity
(# ways) 4 or 8 8 16 N/A

Latency
(cycles) 1-5 12 ~40 ~150

A typical configuration of Intel Ivy Bridge.
Configurations are different with processor types.

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1
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Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of 

cache to reduce miss penalty

• LLC is generally divided into multiple slices
• Conflict happens if addresses map to the same 

slice and the same set

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

Tag Set Index Line offset 

Slice ID = Hash(bits)

An undocumented 
secret hash function
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Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate 
Addresses

Shared Cache

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19
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Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate 
Addresses Wait

Access Target 
Address

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19
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Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate 
Addresses Wait

Access Target 
Address

Measure Latency of 
Each Candidate Address

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19
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Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

• A small trick:
• Access addresses in reverse order

6 75 82 31 4

6 75 82 31 49

6 75 82 31 49

Initial:

Prime:

Victim access:

Probe:

Which to evict?
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Defenses



Micro-architecture Side Channels
A Communication Model

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18
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Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals: 
Oblivious execution, etc.

Close the channel: 
Isolation, etc.

Block detection of signals: 
Randomization, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18
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Defense Design Considerations

Security Performance

Portability
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Breaking RSA
• A real-world example: Square-and-Multiply Exponentiation

for i = n-1 to 0 do
r = sqr(r) 

r  = r mod n
if ei == 1 then

r = mul(r, b)

r  = r mod n
end 

end

What you generally see in papers:
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Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original:

if (secret)
a = *(addr1);

else
a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

Data Oblivious:

a ← load (addr1);
b ← load (addr2);
cmov a = (secret) ? a : b;

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret
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How about nested branches?



Data Oblivious/“Constant time” Programming
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Original:

a = buffer[secret]

secret = confidential
buffer = public

Data Oblivious:

for (int i=0; i<size; i++){
tmp = buffer[i];
cmov a = (i==secret) ? tmp : a;

}

secret = confidential
buffer = public

Other data-dependent 
instruction optimizations:
e.g., zero-skip, early exit, 
microcode, silent stores, …

Latency (in cycles) of the SQRTSS 
instruction for various operands.

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16



Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals: 
Oblivious execution, etc.

Close the channel: 
Isolation, etc.

Block detection of signals: 
Randomization, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18
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HW Resource Partition

• Cache way-partition v.s. Set partition
• Temporal Partition v.s. Spatial Partition
• Security v.s. Quality of Service (QoS)
• Intel Cache Allocation Technology (CAT)

• Challenges nowadays:
• Security domain determination is tricky nowadays
• Scalability: what is #domains > #partitions
• How to partition inside cores?
• Why not execute applications on a single node?

From 
https://software.intel.com/content/www/us/en/develop/articles/intr
oduction-to-cache-allocation-technology.html
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Randomization/Fuzzing

• Introduce noise to time measurement/Make time measurement 
coarse-grained
• Pros and cons?

+ Simple and no performance overhead
+ Effective towards a group of popular attacks
……
- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer

6.888 L4 - Practical Cache Attacks 38

Shusterman et al. Prime+Probe 1, JavaScript 0: Overcoming Browser-based Side-Channel Defenses. USENIX’21



Next: Paper Discussion

Opening Pandora’s Box: A Systematic Study of New Ways 
Microarchitecture Can Leak Private Data



Review 
Address Translation and Cache 

Slides from 6.004



00000000000000000000000011101000

Direct-Mapped Caches

§ Each word in memory maps into a single cache line
§ Access (for cache with 2W lines):

§ Index into cache with W address bits (the index bits)
§ Read out valid bit, tag, and data
§ If valid bit == 1 and tag matches upper address bits, HIT

§ Example 8-line
direct-mapped cache: Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte 
offset
bits =? HIT

0
1
2
3
4
5
6
7
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N-way Set-Associative Cache

§ Use multiple direct-mapped caches in parallel to reduce  
conflict misses
§ Nomenclature:

§ # Rows = # Sets
§ # Columns = # Ways
§ Set size = #ways

= “set associativity”
(e.g., 4-way à 4 lines/set)

§ Each address maps to
only one set, but can be
in any way within the set

§ Tags from all ways
are checked in parallel

§ Fully-associative cache: Extreme case with a single set and as 
many ways as cache lines

TagData TagDataTagData TagData

8 
se

ts

4 ways

=? =? =? =?

INCOMING  ADDRESS
IndexTag

SET

WAY
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Paged Memory Systems

§ Divide physical memory in fixed-size blocks called pages
§ Typical page size: 4KB

§ Interpret each virtual address as a pair
<virtual page number, offset>

§ Use a page table to translate from
virtual to physical page numbers
§ Page table contains the physical page

number (i.e., starting physical address)
for each virtual page number

April 27, 2021

Virtual Page #

Physical Page #

offset

offset

p32-p
Virtual address

Physical address

Page
Table
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MIT 6.823 Spring 2020

Size of Linear Page Table

L04-81February 9, 2022

With 32-bit addresses, 4 KB pages & 4-byte PTEs:
Þ 220 PTEs, i.e, 4 MB page table per user
Þ 4 GB of swap space needed to back up the full virtual 

address space

Larger pages?
• Internal fragmentation (Not all memory in a page is used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244  8-byte PTEs (35 TB!)

What is the “saving grace”?
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MIT 6.823 Spring 2020

Hierarchical Page Table

L04-82February 9, 2022

Level 1 
Page Table

Level 2
Page Tables

Data Pages

page in primary memory 
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2   offset
01112212231

10-bit
L1 index

10-bit 
L2 index
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Translation Lookaside Buffer (TLB)

April 27, 2021

Problem: Address translation is very expensive!
Each reference requires accessing page table

Solution: Cache translations in TLB
TLB hit Þ Single-cycle translation
TLB miss Þ Access page table to refill TLB 

VPN   offset

V R W D    tag        PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

fault?
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Address Translation
Putting it all together

April 27, 2021

Virtual Address

TLB
Lookup

Page Table
Lookup

Update 
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to mem)

miss hit

the  page is 
Ïmemory Îmemory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT
Resume process at 
faulting instruction

MIT 6.004 Spring 2021 L18-19



Using Caches with Virtual Memory

Cache TLBCPU
Main 

memory

Physically-Addressed
Cache

•Avoids stale cache data 
after context switch

•SLOW: Virtualàphysical
translation before every 
cache access

Virtually-Addressed
Cache

•FAST: No virtualàphysical
translation on cache hits

•Problem: Must flush cache 
after context switch

CacheTLBCPU
Main 

memory
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Best of Both Worlds: Virtually-Indexed, 
Physically-Tagged Cache (VIPT)

OBSERVATION: If cache index bits are a subset of page
offset bits, tag access in a physical cache can be done in 
parallel with TLB access. Tag from cache is compared with 
physical page address from TLB to determine hit/miss.

Problem: Limits # of bits of cache index → can only increase 
cache capacity by increasing associativity!

Cache

CPU
Main
memory

TLB

Cache index comes entirely 
from address bits in page 
offset – don’t need to wait 
for TLB to start cache lookup!

April 27, 2021 MIT 6.004 Spring 2021 L18-21
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