
Practical Cache Attacks

Mengjia Yan
Spring 2022

Reminder

• Lab 1 will be out TODAY

• Fill in paper preference on HotCRP by Friday

6.888 L4 - Practical Cache Attacks 2

Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

ways

6.888 L4 - Practical Cache Attacks 3

Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

Wait

Access

ways

6.888 L4 - Practical Cache Attacks 4

Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

Wait

Access

ways

Receive “1” = 8 accesses à 1 miss

Probe

6.888 L4 - Practical Cache Attacks 5

Analogy: Bucket/Ball

Shared Cache

Sender Receiver

Cache Set

ways

Sender’s address Receiver’s address

Each cache set is a bucket
that can hold 8 balls

How to find addresses that
map to the same set?

6.888 L4 - Practical Cache Attacks 6

Review Cache and Address Translation

On blackboard
• Cache
• Data + tag, directly mapped, N-way associative

• Page translation
• Page table
• The case when the same virtual address in different processes map to

different physical addresses
• The case when multiple virtual addresses map to the same physical address

• Hierarchical page tables and TLB
• Cache and virtual address

6.888 L4 - Practical Cache Attacks 7

00000000000000000000000011101000

Direct-Mapped Caches

§ Each word in memory maps into a single cache line
§ Access (for cache with 2W lines):

§ Index into cache with W address bits (the index bits)
§ Read out valid bit, tag, and data
§ If valid bit == 1 and tag matches upper address bits, HIT

§ Example 8-line
direct-mapped cache: Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte
offset
bits =? HIT

0
1
2
3
4
5
6
7

April 15, 2021 MIT 6.004 Spring 2021 L15-86.888 L4 - Practical Cache Attacks 8

N-way Set-Associative Cache

§ Use multiple direct-mapped caches in parallel to reduce
conflict misses
§ Nomenclature:

§ # Rows = # Sets
§ # Columns = # Ways
§ Set size = #ways

= “set associativity”
(e.g., 4-way à 4 lines/set)

§ Each address maps to
only one set, but can be
in any way within the set

§ Tags from all ways
are checked in parallel

§ Fully-associative cache: Extreme case with a single set and as
many ways as cache lines

TagData TagDataTagData TagData

8
se

ts

4 ways

=? =? =? =?

INCOMING ADDRESS
IndexTag

SET

WAY

April 15, 2021 MIT 6.004 Spring 2021 L15-156.888 L4 - Practical Cache Attacks 9

Address Translation (4KB page)

system’s view
Physical Address (32bit):

Programmer’s view
Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset
(12 bits)

31 12 11 0

physical page number Page offset
(12 bits)

Page
Table Copy

page offset

6.888 L4 - Practical Cache Attacks 10

MIT 6.823 Spring 2020

Hierarchical Page Table

L04-82February 9, 2022

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

6.888 L4 - Practical Cache Attacks 11

Translation Lookaside Buffer (TLB)

April 27, 2021

Problem: Address translation is very expensive!
Each reference requires accessing page table

Solution: Cache translations in TLB
TLB hit Þ Single-cycle translation
TLB miss Þ Access page table to refill TLB

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

fault?

MIT 6.004 Spring 2021 L18-166.888 L4 - Practical Cache Attacks 12

Using Caches with Virtual Memory

Cache TLBCPU
Main

memory

Physically-Addressed
Cache

•Avoids stale cache data
after context switch

•SLOW: Virtualàphysical
translation before every
cache access

Virtually-Addressed
Cache

•FAST: No virtualàphysical
translation on cache hits

•Problem: Must flush cache
after context switch

CacheTLBCPU
Main

memory

April 27, 2021 MIT 6.004 Spring 2021 L18-206.888 L4 - Practical Cache Attacks 13

Which one is better?

Can we do even better?

Hint: some part of the virtual address and physical address are the same

Best of Both Worlds: Virtually-Indexed,
Physically-Tagged Cache (VIPT)

OBSERVATION: If cache index bits are a subset of page
offset bits, tag access in a physical cache can be done in
parallel with TLB access. Tag from cache is compared with
physical page address from TLB to determine hit/miss.

Problem: Limits # of bits of cache index → can only increase
cache capacity by increasing associativity!

Cache

CPU
Main
memory

TLB

Cache index comes entirely
from address bits in page
offset – don’t need to wait
for TLB to start cache lookup!

April 27, 2021 MIT 6.004 Spring 2021 L18-21
6.888 L4 - Practical Cache Attacks 14

Find Conflicting Addressing From Virtual Address

Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31 12 11 0

physical page number Page offset
(12 bits)

Line offset
(6 bits)

Index
(3 bits)

TagCache mapping:
(8 sets)

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

2
bit

Not controllable via
virtual address.

6.888 L4 - Practical Cache Attacks 15

w/ Huge Pages

• Huge page size: 2MB or 1GB
• Number of bits for page offset?

Virtual Address :
4KB page

48 12 11 0

Virtual page number Page offset
(12 bits)

48 21 20 0

Virtual page number Page offset
(21 bits)

Virtual Address :
2MB page

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

6.888 L4 - Practical Cache Attacks 16

Micro-arch Side Channel Generalization

Hardware
resourceSender Receiver

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (send ‘1’)
Use resource

else
idle

if (t2 – t1 > THRESH)
read ‘1’

else
read ‘0’

6.888 L4 - Practical Cache Attacks 17

From Covert à Side Channels

Hardware
resource

Victim Attacker

if (send ‘1’)
Use resource

else
idle

Covert channel:
if (secret)
Use resource

else
idle

Side channel: t1 = rdtsc()
Use resource
t2 = rdtsc()

if (t2 – t1 > THRESH)
read ‘1’

else
read ‘0’

6.888 L4 - Practical Cache Attacks 18

Breaking RSA
• A real-world example: Square-and-Multiply Exponentiation

for i = n-1 to 0 do
r = sqr(r)

r = r mod n
if ei == 1 then

r = mul(r, b)

r = r mod n
end

end

What you generally see in papers:

6.888 L4 - Practical Cache Attacks 19

The Multiply Function

6.888 L4 - Practical Cache Attacks 20

Raw Trace

Access latencies measured in the probe operation in Prime+Probe.
A sequence of “01010111011001” can be deduced as part of the exponent.

6.888 L4 - Practical Cache Attacks 21

More Advanced Cache Attacks
You may not need the following tips for Lab 1

6.888 L4 - Practical Cache Attacks 22

Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of

cache to reduce miss penalty

L1-I/D cache L2 cache L3 cache (LLC) DRAM

Size 32KB 256KB 1MB/core 16GB

Associativity
(# ways) 4 or 8 8 16 N/A

Latency
(cycles) 1-5 12 ~40 ~150

A typical configuration of Intel Ivy Bridge.
Configurations are different with processor types.

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

6.888 L4 - Practical Cache Attacks 23

Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of

cache to reduce miss penalty

• LLC is generally divided into multiple slices
• Conflict happens if addresses map to the same

slice and the same set

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

Tag Set Index Line offset

Slice ID = Hash(bits)

An undocumented
secret hash function

6.888 L4 - Practical Cache Attacks 24

Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate
Addresses

Shared Cache

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19

6.888 L4 - Practical Cache Attacks 25

Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate
Addresses Wait

Access Target
Address

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19

6.888 L4 - Practical Cache Attacks 26

Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate
Addresses Wait

Access Target
Address

Measure Latency of
Each Candidate Address

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19

6.888 L4 - Practical Cache Attacks 27

Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

• A small trick:
• Access addresses in reverse order

6 75 82 31 4

6 75 82 31 49

6 75 82 31 49

Initial:

Prime:

Victim access:

Probe:

Which to evict?

6.888 L4 - Practical Cache Attacks 28

Defenses

Micro-architecture Side Channels
A Communication Model

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L4 - Practical Cache Attacks 30

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals:
Oblivious execution, etc.

Close the channel:
Isolation, etc.

Block detection of signals:
Randomization, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L4 - Practical Cache Attacks 31

Defense Design Considerations

Security Performance

Portability

6.888 L4 - Practical Cache Attacks 32

Breaking RSA
• A real-world example: Square-and-Multiply Exponentiation

for i = n-1 to 0 do
r = sqr(r)

r = r mod n
if ei == 1 then

r = mul(r, b)

r = r mod n
end

end

What you generally see in papers:

6.888 L4 - Practical Cache Attacks 33

Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original:

if (secret)
a = *(addr1);

else
a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

Data Oblivious:

a ← load (addr1);
b ← load (addr2);
cmov a = (secret) ? a : b;

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret

6.888 L4 - Practical Cache Attacks 34

How about nested branches?

Data Oblivious/“Constant time” Programming

6.888 L4 - Practical Cache Attacks 35

Original:

a = buffer[secret]

secret = confidential
buffer = public

Data Oblivious:

for (int i=0; i<size; i++){
tmp = buffer[i];
cmov a = (i==secret) ? tmp : a;

}

secret = confidential
buffer = public

Other data-dependent
instruction optimizations:
e.g., zero-skip, early exit,
microcode, silent stores, …

Latency (in cycles) of the SQRTSS
instruction for various operands.

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals:
Oblivious execution, etc.

Close the channel:
Isolation, etc.

Block detection of signals:
Randomization, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L4 - Practical Cache Attacks 36

HW Resource Partition

• Cache way-partition v.s. Set partition
• Temporal Partition v.s. Spatial Partition
• Security v.s. Quality of Service (QoS)
• Intel Cache Allocation Technology (CAT)

• Challenges nowadays:
• Security domain determination is tricky nowadays
• Scalability: what is #domains > #partitions
• How to partition inside cores?
• Why not execute applications on a single node?

From
https://software.intel.com/content/www/us/en/develop/articles/intr
oduction-to-cache-allocation-technology.html

6.888 L4 - Practical Cache Attacks 37

Randomization/Fuzzing

• Introduce noise to time measurement/Make time measurement
coarse-grained
• Pros and cons?

+ Simple and no performance overhead
+ Effective towards a group of popular attacks
……
- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer

6.888 L4 - Practical Cache Attacks 38

Shusterman et al. Prime+Probe 1, JavaScript 0: Overcoming Browser-based Side-Channel Defenses. USENIX’21

Next: Paper Discussion

Opening Pandora’s Box: A Systematic Study of New Ways
Microarchitecture Can Leak Private Data

Review
Address Translation and Cache

Slides from 6.004

00000000000000000000000011101000

Direct-Mapped Caches

§ Each word in memory maps into a single cache line
§ Access (for cache with 2W lines):

§ Index into cache with W address bits (the index bits)
§ Read out valid bit, tag, and data
§ If valid bit == 1 and tag matches upper address bits, HIT

§ Example 8-line
direct-mapped cache: Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte
offset
bits =? HIT

0
1
2
3
4
5
6
7

April 15, 2021 MIT 6.004 Spring 2021 L15-86.888 L4 - Practical Cache Attacks 41

N-way Set-Associative Cache

§ Use multiple direct-mapped caches in parallel to reduce
conflict misses
§ Nomenclature:

§ # Rows = # Sets
§ # Columns = # Ways
§ Set size = #ways

= “set associativity”
(e.g., 4-way à 4 lines/set)

§ Each address maps to
only one set, but can be
in any way within the set

§ Tags from all ways
are checked in parallel

§ Fully-associative cache: Extreme case with a single set and as
many ways as cache lines

TagData TagDataTagData TagData

8
se

ts

4 ways

=? =? =? =?

INCOMING ADDRESS
IndexTag

SET

WAY

April 15, 2021 MIT 6.004 Spring 2021 L15-156.888 L4 - Practical Cache Attacks 42

Paged Memory Systems

§ Divide physical memory in fixed-size blocks called pages
§ Typical page size: 4KB

§ Interpret each virtual address as a pair
<virtual page number, offset>

§ Use a page table to translate from
virtual to physical page numbers
§ Page table contains the physical page

number (i.e., starting physical address)
for each virtual page number

April 27, 2021

Virtual Page #

Physical Page #

offset

offset

p32-p
Virtual address

Physical address

Page
Table

MIT 6.004 Spring 2021 L18-86.888 L4 - Practical Cache Attacks 43

MIT 6.823 Spring 2020

Size of Linear Page Table

L04-81February 9, 2022

With 32-bit addresses, 4 KB pages & 4-byte PTEs:
Þ 220 PTEs, i.e, 4 MB page table per user
Þ 4 GB of swap space needed to back up the full virtual

address space

Larger pages?
• Internal fragmentation (Not all memory in a page is used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace”?

6.888 L4 - Practical Cache Attacks 44

MIT 6.823 Spring 2020

Hierarchical Page Table

L04-82February 9, 2022

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

6.888 L4 - Practical Cache Attacks 45

Translation Lookaside Buffer (TLB)

April 27, 2021

Problem: Address translation is very expensive!
Each reference requires accessing page table

Solution: Cache translations in TLB
TLB hit Þ Single-cycle translation
TLB miss Þ Access page table to refill TLB

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

fault?

MIT 6.004 Spring 2021 L18-166.888 L4 - Practical Cache Attacks 46

6.888 L4 - Practical Cache Attacks 47

Address Translation
Putting it all together

April 27, 2021

Virtual Address

TLB
Lookup

Page Table
Lookup

Update
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to mem)

miss hit

the page is
Ïmemory Îmemory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT
Resume process at
faulting instruction

MIT 6.004 Spring 2021 L18-19

Using Caches with Virtual Memory

Cache TLBCPU
Main

memory

Physically-Addressed
Cache

•Avoids stale cache data
after context switch

•SLOW: Virtualàphysical
translation before every
cache access

Virtually-Addressed
Cache

•FAST: No virtualàphysical
translation on cache hits

•Problem: Must flush cache
after context switch

CacheTLBCPU
Main

memory

April 27, 2021 MIT 6.004 Spring 2021 L18-206.888 L4 - Practical Cache Attacks 48

Best of Both Worlds: Virtually-Indexed,
Physically-Tagged Cache (VIPT)

OBSERVATION: If cache index bits are a subset of page
offset bits, tag access in a physical cache can be done in
parallel with TLB access. Tag from cache is compared with
physical page address from TLB to determine hit/miss.

Problem: Limits # of bits of cache index → can only increase
cache capacity by increasing associativity!

Cache

CPU
Main
memory

TLB

Cache index comes entirely
from address bits in page
offset – don’t need to wait
for TLB to start cache lookup!

April 27, 2021 MIT 6.004 Spring 2021 L18-21
6.888 L4 - Practical Cache Attacks 49

