
Side Channel Mitigations
Mengjia Yan
Spring 2022

Outline
• Non-interference: a general security property

• Verify Non-interference for Side Channels and Transient Execution

• Hardware and Software Contract

6.888 L6 - Side Channel Mitigations 2

Non-Interference Example

• Intuitively: not affecting
• Any sequence of low inputs will produce the same low outputs,

regardless of what the high level inputs are.
6.888 L6 - Side Channel Mitigations 3

Low
(low sensitivity,

not highly classified)

High
(high sensitivity,

not seen by uncleared
users)

Non-Interference Example

6.888 L6 - Side Channel Mitigations 4

Use Cases of Non-interference
• Confidentiality: e.g., process isolation

• My memory -> Confidentiality of High state
• Other programs’ memory -> Low

• Integrity: e.g., control-flow hijacking
• My memory -> Integrity of Low State
• Attacker controlled input -> High

• Swirl example

• Expand High-Low to Lattice

6.888 L6 - Side Channel Mitigations 5

Lattice-Based Access Control Models; Ravi S. Sandhu; 1993

Non-Interference Formulation

• Formulate the property as state-machine transition.
• Looking at a single-trace is ineffective

6.888 L6 - Side Channel Mitigations 6

High Low High’ Low’ ∀ 𝑆1, 𝑆2, (𝑆, 𝑃) → 𝑆!

if 𝑆1" = 𝑆2"

then 𝑆1"! = 𝑆2"′

Program

High2 Low High2’ Low’
Program

Generality of Non-interference

• Conventionally: ISA emulation for software analysis/testing

• Can also be used for hardware security design
• Micro-architecture: state includes caches, buffers, buses, etc.
• Circuit level: flip-flop

6.888 L6 - Side Channel Mitigations 7

Taint Analysis (also Taint Tracking)
• Goal: verify non-interference property
• Analogy
• Components:

• Source of taint (high state)
• Taint propagation
• Taint check (no taint on low state)

6.888 L6 - Side Channel Mitigations 8

1: x = get_secret()

2: y = array[x][x]

x

Internet

y

Explicit and Implicit Information Flow

Control-Flow Address Alias

6.888 L6 - Side Channel Mitigations 9

1: x = secret;

2: y = x;

3: z = array[y];

1: x = secret;
2: if (x == 0) {
3: y = 1;
4: } else {
5: z = 2;
6: }

1: x = secret;
2: array[0] = x;
3: z = array[y];

Taint Analysis Methods
• Dynamic: run-time check

• Detect non-interference violation on-the-fly for a given input

• Static: compiler-time check
• Verify whether a given program is secure/bug-free for arbitrary input

6.888 L6 - Side Channel Mitigations 10

Dynamic Taint Analysis

• Problems:
• Granularity
• Run-time overhead
• How to handle implicit flow?

6.888 L6 - Side Channel Mitigations 11

Sub-State H/L Tainted

a H 1

b L 0

c L 0
Taint Monitor

(SW/HW)

Dynamic Taint Analysis

• Problems:
• Granularity
• Run-time overhead
• How to handle implicit flow?

6.888 L6 - Side Channel Mitigations 12

1: x = secret;
2: if (x == 0) {
3: y = 1;
4: } else {
5: z = 2;
6: }

1: BREQ x 4
2: y <- 1
3: JMP 5
4: z <- 2
5: …

How to deal with it?

Taint PC.
Taint Explosion.

Static Taint Analysis
• Key differences

• Verify whether a given program is secure for arbitrary inputs
• Can leverage high-level program information

6.888 L6 - Side Channel Mitigations 13

x == 0?

y = 1

z = 2

…

Control Flow Graph (CFG)

1: x = secret;
2: if (x == 0) {
3: y = 1;
4: } else {
5: z = 2;
6: }

Static Taint Analysis
• Problems

• Scalability (check all possible inputs)
• How to handle implicit flow?

6.888 L6 - Side Channel Mitigations 14

1: x = secret;
2: array[0] = x;
3: z = array[y];

1: x = secret;
2: *ptr1 = x;
3: z = *ptr2;

If conservative,
Taint Explosion.

How to deal with it?

Takeaways
• Non-interference property: general security property for both

confidentiality and integrity

• Taint Analysis
• Useful techniques for checking non-interference

• Static: verification tool
• Dynamic: online monitoring

• Both have taint explosion problems

6.888 L6 - Side Channel Mitigations 15

Non-interference for Timing Side Channels

• How to define non-interference for timing side channels?

• How to check whether a given mitigation achieves non-
interference or not?

• How to coordinate software and hardware mitigations? How to
reason security about software-hardware co-design?

• Given SW x, running on HW y can protect all data containing secret z?
{SW x, HW y, sec z}

6.888 L6 - Side Channel Mitigations 16

Non-interference at Micro-arch Level

6.888 L6 - Side Channel Mitigations 17

High Low High’ Low’
Program

State State Transition
(Program Execution)

Software Analysis

Micro-arch Side
Channel

∀ 𝑆1, 𝑆2, (𝑆, 𝑃) → 𝑆!

if 𝑆1" = 𝑆2"

then 𝑆1"! = 𝑆2"′

Non-interference at Micro-arch Level

6.888 L6 - Side Channel Mitigations 18

High Low High’ Low’
Program

State State Transition
(Program Execution)

Software Analysis

Micro-arch Side
Channel

Register,
Memory (virtual) ISA Emulation

Register, Memory (Physical)
Cache, BTB, Bus Busy Bits,

Pipeline ROB status etc

Detailed Instruction
Execution

∀ 𝑆1, 𝑆2, (𝑆, 𝑃) → 𝑆!

if 𝑆1" = 𝑆2"

then 𝑆1"! = 𝑆2"′

Verify HW Design Using Static IFT

6.888 L6 - Side Channel Mitigations 19

Verification of a Practical Hardware Security Architecture Through Static Information Flow Analysis; Ferraiuolo et al; ASPLOS’17
HyperFlow: A Processor Architecture for Nonmalleable, Timing-Safe Information Flow Security; Ferraiuolo et al; CCS’18

1 reg {L} v, {L} l, {H} h;
2 // LH (0) = L, LH (1) = H
3 wire {LH(v)} shared;

4 // l=h is forbidden
5 if (v == 0) l = shared;
6 else h = shared;

7 // implicit flow, not allowed
8 if (h == 0) l = 0;
9 else l = 1;

NS: a bit to indicate normal world or secure worldAnnotate variables (registers and
wires) with security labels.

Non-Interference at Gate Level

6.888 L6 - Side Channel Mitigations 20

Complete Information Flow Tracking from the Gates Up; Tiwari et al; ASPLOS’09

• Dynamic taint tracking

2-input
AND gate

Shadow Taint Logic
OR gate

Sound, yet Conservative

Non-Interference at Gate Level

6.888 L6 - Side Channel Mitigations 21

Complete Information Flow Tracking from the Gates Up; Tiwari et al; ASPLOS’09

• Dynamic taint tracking

2-input
AND gate

Shadow Taint Logic
OR gate

Sound, yet Conservative
Precise Taint Logic

compose
large

functions

Overhead?

Non-interference at Micro-arch Level

6.888 L6 - Side Channel Mitigations 22

High Low High’ Low’
Program

State State Transition
(Program Execution)

Software Analysis

Micro-arch Side
Channel

Register,
Memory (virtual) ISA Emulation

Register, Memory (Physical)
Cache, BTB, Bus Busy Bits,

Pipeline ROB status etc
Detailed Execution

Non-interference at Micro-arch Level

6.888 L6 - Side Channel Mitigations 23

High Low High’ Low’
Program

State State Transition
(Program Execution)

Software Analysis

Micro-arch Side
Channel

Register,
Memory (virtual) ISA Emulation

Register, Memory (Physical)
Cache, BTB, Bus Busy Bits,

Pipeline ROB status etc
Detailed Execution

Can we use the
same definition to

reason about
software mitigations?

Yes, we can. But ...

“Constant-time” Programming
• Write program w/o data-dependent behavior
• Verify non-interference of timing side channels by simulating

micro-arch state machine.
• Problems?

6.888 L6 - Side Channel Mitigations 24

Original:

bool secret;
x <- pub[secret*64];

Data Oblivious:

bool secret;
a <- pub[0];
b <- pub[64];
cmov x <- (secret) ? b : a;

Observation Model
• Motivation:

• Avoid verifying SW against specific implementations
• Observations:

• Program counters, Memory access addresses, Memory access data,
Register data

• Dependent on hardware implementation

6.888 L6 - Side Channel Mitigations 25

High Low High’ Low’
Program

Observations

∀ 𝑆1, 𝑆2, 𝑆, 𝑃 → 𝑆!, 𝐎

if 𝑆1" = 𝑆2"

then 𝑆1"! = 𝑆2"! and 𝑶𝟏 = 𝑶𝟐

Verify “Constant-time” Programming
• Using Observations

6.888 L6 - Side Channel Mitigations 26

Original:

bool secret;
x <- pub[secret*64];

Data Oblivious:

bool secret;
a <- pub[0];
b <- pub[64];
cmov x <- (secret) ? b : a;

Memory access sequence:
H

Memory access sequence:
0 (L), 64 (L)

Takeaways
• How to verify non-interference of timing side channels?

• To check HW: state transition at micro-arch and gate level

• To check SW: define observation model
• Observation model can be served as a contract between HW and SW

6.888 L6 - Side Channel Mitigations 27

Shall we always assume memory access sequence as the observation?

No. It is hardware dependent. Think about Silent
Store and Cache compression.

“Constant-time Programming” Fails
in the Spectre Era

Original:

if (x < limit){ //limit=4
y <- pub1[x];
z <- pub2[y*64];

}

pub1[0]

pub1[1]

pub1[2]

pub1[3]

secret

Memory Layout

6.888 L6 - Side Channel Mitigations 28

Memory access sequence:
x (L), y (L)

Execution Model
• Motivation:

• Incorporate speculative execution in an execution model
• Add Execution Model:

• Sequential, Branch mis-speculation, etc.

6.888 L6 - Side Channel Mitigations 29

High Low High’ Low’

Program
Execution Model

Observations

Hardware-Software Contracts for Secure Speculation; Guarnieri et al; S&P’20

∀ 𝑆1, 𝑆2, 𝑆, 𝑃 → 𝑆!, 𝑂

if 𝑆1" = 𝑆2"

then 𝑆1"! = 𝑆2"! and 𝑂1 = 𝑂2

“Constant-time Programming” Fails
in the Spectre Era

Original:

if (x < limit){ //limit=4
y <- pub1[x];
z <- pub2[y*64];

}

pub1[0]

pub1[1]

pub1[2]

pub1[3]

secret

Memory Layout

6.888 L6 - Side Channel Mitigations 30

Memory access sequence (no mispredict):
x (L), y (L)
Memory access sequence (with mispredict):
x (L), y (H)

SW Mitigations Against Spectre
fence:

if (x < limit){
lfence();
y <- pub1[x];
z <- pub2[y*64];

}

SLH:

if (x < limit){
cmov mask <- (i < limit) 0xFFFF:0
y <- pub1[x] & mask;
z <- pub2[x*64];

}

Chandler Carruth. Speculative Load Hardening. https://llvm.org/docs/SpeculativeLoadHardening.html

6.888 L6 - Side Channel Mitigations 31

Memory access sequence (with mispredict):
∅

Memory access sequence (with mispredict):
0 (L), y (L)

https://llvm.org/docs/SpeculativeLoadHardening.html

HW Solutions Targeting
Many Transient Execution Attacks

32

Ja
n Year of 2018

Meltdown
Spectre-PHT/BTB

Au
g

Forshadow
Forshadow-NG

Ju
l

Spectre-RSB
Spectre-ROP
NetSpectre

M
ay

SSB
RSRE

Ju
n

LazyFP ……

6.888 L6 - Side Channel Mitigations

Generalization of Transient Execution

• Different transient execution attacks create transient instructions in
different ways

• Speculative attack model: an attacker can exploit any speculative insts

33

Speculative
Attack Model

Various events, such as:
• Control-flow mispredictions à Spectre
• Virtual memory exceptions à Meltdown
• Address alias between a load and an earlier store
• Interrupts
• etc.

6.888 L6 - Side Channel Mitigations

unsafe safe

Load reaches head
of Reorder Buffer

Lifetime of a Load Instruction

34

Load is issued to
memory

Load is speculative
Spectre

attack model

All prior branches
are resolved

unsafe safeComprehensive
attack model

The load becomes
unsquashable

Visibility Point

Load can be made visible
without compromising security

Naïve Solution: Delay all spec Loads

35

Visibility
Point

Load is issued
to memory

Load reaches
head of ROBdelay

Load issued
to memory

6.888 L6 - Side Channel Mitigations

Delay-on-Miss (DoM)

Christos Sakalis, et al. Efficient invisible speculative execution through selective delay and value prediction. ISCA’19

36

Visibility
Point

Load is issued
to L1

Load reaches
head of ROB

Load issued
to L1

Hit

Visibility
Point

Load is issued
to L1

Load reaches
head of ROB

Load issued
to L1

Miss

Load issued
to memory

// x is committed

Br: if (x < size){
// speculation starts here

Ld1: y = array1[x]

Ld2: z = array2[y]

}

Performance Optimizations

37

x: Committed register state
(exists in legal execution)

y: Transient register state
(does not exist in legal execution)

Insight: Only need to
protect the instructions that

use transient states

// x is committed

Br: if (x < size){
// speculation starts here

Ld1: y = array1[x]

Ld2: z = array2[y]

}

Access Instruction
(brings transient state

into pipeline)

Transmit Instruction
(uses transient state)

STT, NDA, etc

38

Taint Tracking of
Speculative Data

Only Protect Transmit
Instructions

Jiyong Yu, Mengjia Yan, et al. Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data. MICRO’20

// x is committed

Br: if (x < size){
// speculation starts here

Ld1: y = array1[x]

Ld2: z = array2[y]

}

Comparing Two Approaches

39

STT/NDA/…

NO protection

DoM/InvisiSpec/…
Need protection

Need protection Need protection

Ld2 is secure:
Ld2 reaches
visibility point

When Ld1 reaches
visibility point

y

[y]

[x]

Speculative

Committed

6.888 L6 - Side Channel Mitigations

Comparing Two Approaches

// x is committed

Ld1: y = array1[x]

Br: if (x < size){
// speculation starts here

Ld2: z = array2[y]

}

y [x]
STT/NDA/…

NO protection

InvisiSpec/DoM/…

Need protection[y]

Speculative

Committed

6.888 L6 - Side Channel Mitigations 40

Problems
• Different HW mitigations achieve different security properties
• How to communicate this information to SW?

• ISA?
• List code patterns?
• Specify execution model + observation model?

6.888 L6 - Side Channel Mitigations 41

Current state-of-the-art.
May not be the final solution.
An unsolved research problem.

Analyze Security Properties
Execution Model

Sequential Speculative (can mispredict)

Observation
Model

Program Counter

Program Counter
+ Memory Address

Program Counter
+ Memory Address
+ Register Content

6.888 L6 - Side Channel Mitigations 42

Disable
Speculation

No
Protection

Analyze Security Properties
Execution Model

Sequential Speculative (can mispredict)

Observation
Model

Program Counter

Program Counter
+ Memory Address

Program Counter
+ Memory Address
+ Register Content

6.888 L6 - Side Channel Mitigations 43

Disable
Speculation

No
Protection

No
Protection

Analyze Security Properties
Execution Model

Sequential Speculative (can mispredict)

Observation
Model

Program Counter

Program Counter
+ Memory Address

Program Counter
+ Memory Address
+ Register Content

6.888 L6 - Side Channel Mitigations 44

Disable
Speculation

DoM

Analyze Security Properties
Execution Model

Sequential Speculative (can mispredict)

Observation
Model

Program Counter

Program Counter
+ Memory Address

Program Counter
+ Memory Address
+ Register Content

6.888 L6 - Side Channel Mitigations 45

Disable
Speculation

DoM

DoM

Analyze Security Properties
Execution Model

Sequential Speculative (can mispredict)

Observation
Model

Program Counter

Program Counter
+ Memory Address

Program Counter
+ Memory Address
+ Register Content

6.888 L6 - Side Channel Mitigations 46

Disable
Speculation

STT

DoM

DoM

Analyze Security Properties
Execution Model

Sequential Speculative (can mispredict)

Observation
Model

Program Counter

Program Counter
+ Memory Address

Program Counter
+ Memory Address
+ Register Content

6.888 L6 - Side Channel Mitigations 47

Disable
Speculation

DoM

STT

STTDoM

Summary
• Non-interference

• A general security property that can be used to reason software
security and micro-arch side channels

• Pros/Cons of static and dynamic taint analysis

• Reason about non-interference for side mitigations
• Both observation model and execution model are hardware dependent

• Fundamental problem, timing is not defined at the contract
between HW and SW (currently ISA)

6.888 L6 - Side Channel Mitigations 48

