Physical Attacks MIT 6.888 Spring 2022

Mengjia Yan & Joseph Ravichandran Image: Proto G Engineering, "Oscilloscope Art"

Who do you trust?

What if the user is the attacker?

Physical Attacks

Direct access to a chip is possible: signals can be injected, modified, or measured

PENTIUM III CPU

Q

C-

AOID IL GEN OVED

.

1420 109-14 57

DDR RAM TH 11 nosonain ©, Southbridge **KERNEL/BIOS NVIDIA GPU**

IDE HDD/DVD

Image: Modern Vintage Gamer (YouTube)

- "SECRET ROM" STORED IN MCPX - FLASH DECRYPTION KEY (RC4) STORED **IN "SECRET ROM"**

Image: Modern Vintage Gamer (YouTube)

Active

Inject new signals

Modify existing signals in new ways

Passive

No modification of signals

Only observe regular operation

Fig. 7.3 Decapsulated chips

Fig. 7.7 Layout of SRAM cell and SRAM area in PIC16F84 microcontroller

Fig. 7.6 Laser scan of unpowered and powered-up SRAM in PIC16F84 microcontroller

Some Common Terms

JTAG

Joint Test Action Group: A debug interface for testing devices. If this is left enabled on a product, you can do fun things. See: J-Link, Jtagulator.

Single Wire Debug: The ARM debugger protocol built on JTAG. Think GDB but for embedded systems. May be disabled by security bit (this can be glitched).

Security Bit

Setting that disables code readout on an MCU. Allows manufacturers to leave debug ports (like SWD) on the PCB without worrying about us dumping their code. Can be glitched.

SWD

Flash

(Sometimes Builtin) storage that the microcontroller uses to store firmware, code, data, etc. If external, can be dumped. May be encrypted.

Boot ROM

Read-only code that initiates CPU bringup. This is fixed in silicon and cannot be modified. Bugs here are nearly always catastrophic for system security.

Attacks

Today

Active

Passive

Cheap

Tools

Affordable

Crazy Expensive

• • • 🗊 • < 🕥 D (•,•) HOME BLOG HACKADAY.IO TINDIE

Yes, Really

Notable Examples

AirTag Lose your knack for losing things.

How I ha

		(Ê)
 0:00 / 32:17 		••• •• •• ••
icked a hardware crypto wallet and recov		
riews ∙ Jan 24, 2022 Joe Grand © 58K subscribers	∎ 166К Чу́́ Ч D	SUBSCRIBED

Voltage Glitching

+5V

GND

Cut the power at the exact right time to make something go wrong

Voltage Glitching

Challenge

Need to deal with capacitors, which filter out our attack.

Crystal Oscillator

Clock Glitching

Oscillator

Spring

Spring

Ground

Crystal Oscillator

Image: Arduino Uno R3 Reference Design

Crystal Oscillator

Image: Arduino Uno R3 Reference Design

fritzing

Pseudocode

void main () { int iter = 0; while(true) { int chksum = compute_checksum(); iter++; print("MIT{flag}");

print("Locked! %d %d", chksum, iter);

for (int i = 0; i < len; i++) {</pre> if (buf1[i] != buf2[i]) { return false; \mathbf{F} return true;

- Spot the Bug
- bool memcmp (char *buf1, char *buf2, size_t len) {

Spot the Bug

bool memcmp (char *buf1, char *buf2, size_t len) { for (int i = 0; i < len; i++) {</pre> if (buf1[i] != buf2[i]) { return false; return true;

Fatal Flaw

No Demo: You will do this in recitation next week!

Static RAM Cell

Image: Wikimedia Creative Commons

MOS Capacitor

MOS Capacitor

How can you measure current on an oscilloscope?

Apply Ohm's Law

Voltage (V) = Current (I) * Resistance (R)

Or in other words,

I = V / R

fritzing

fritzing

fritzing

Simple Power Analysis

Colin O'Flynn and Greg d'Eon, "I, for one, Welcome Our New Power Analysis Overloads". BlackHat 2018.

Differential Power Analysis Paul Kocher, Joshua Jaffe, Benjamin Jun

- Statistical analysis of power traces
- Leak the contents of internal device bus

ChipWhisperer-Lite 32-Bit, NewAE Technology Inc.

ces vice bus


```
int rsa_modExp(int b, int e, int m) {
  int product = 1;
  b = b \% m;
  while (e > 0)
    if (e & 1){
      product = modmult(product, b, m);
    b = modmult(b, b, m);
    e >>= 1;
  return product;
```



```
int rsa_modExp(int b, int e, int m) {
  int product = 1;
  b = b \% m;
  while (e > 0)
    if (e & 1){
      product = modmult(product, b, m);
    b = modmult(b, b, m);
    e >>= 1:
  return product;
```



```
int rsa_modExp(int b, int e, int m) {
  int product = 1;
  b = b \% m;
  while (e > 0)
    if (e & 1){
      product = modmult(product, b, m);
    b = modmult(b, b, m);
    e >>= 1;
  return product;
```


e = e

```
int rsa_modExp(int b, int e, int m) {
  int product = 1;
  b = b \% m;
  while (e > 0)
    if (e & 1){
      product = modmult(product, b, m);
    b = modmult(b, b, m);
    e >>= 1:
  return product;
```


NVIDIA GPU

PENTIUM III CPU

OID IL BENOAEL

Ee HI-BOT 0247

Image: Modern Vintage Gamer (YouTube)

- "SECRET ROM" STORED IN MCPX

- FLASH DECRYPTION KEY (RC4) STORED **IN "SECRET ROM"**

- DATA BUS "SNIFFER" BUILT BETWEEN FLASH AND MCPX

DECRYPTION KEY DISCOVERED, FLASH KERNEL (BIOS) DECRYPTED AND **PATCHED FOR UNSIGNED CODE**

What attackers are willing to do (Kamikaze Hack)

Xbox 360 Reset Glitch Hack (RGH)

www.gc-repairs.com

Xbox One Security Architecture

Confidentiality

Plaintext of games and secret keys **never** leave the CPU die

Integrity

Attest software is not compromised before connecting to Xbox Live

Xbox One Security Architecture

Attacker == user

- Any bus / external device considered compromised (flash, HDD, DRAM) - PCIe, SATA, USB, DRAM bus, motherboard fabric can be intercepted
- Can only trust CPU Si itself

Use a custom chip!

- Encrypt all busses and DRAM contents
- Custom on-die crypto registers hold keys
- Build a shared key between CPU and optical disk drive
- Reduce trusted computing base (TCB) by moving security critical code to a trusted minimal hypervisor
- Bringup uses secure Boot ROM to sign future stages

lakeaways

- Physical attacks pose a new threat model (customer may also be the attacker!)
- Cannot trust anything off-chip
- We can classify attacks based on costs and invasiveness
 - Some attacks are quite cheap...
- Defense in depth (no single point of failure), tradeoff between security and performance

- Just need to ensure physical attacks aren't easy enough to be worth an attacker's time

