6.893 Pervasive Computing Larry Rudolph

Course Overview

Two sets of students -- MIT and SMA Two parts to class Individual technologies (PS & Quiz) Group projects Materials iPaq, backpaq, cricket, ?? Slides, handouts, notes (raw) TA's -- filter for your questions Albert @ MIT, ???@ SMA

*

What is pervasive computing?

Post PC -- PC not the center
Digital devices all around us
Ubiquitous Computing
Mark Weisner -- Calm Computing

Oxygen Vision

To bring an abundance of computation & communication within easy reach of humans through natural perceptual interfaces of speech and vision so computation blends into peoples' lives enabling them to easily do tasks they want to do: collaborate, access knowledge, automate routine tasks

Pervasive, Human-Centric Computing

What do these words mean? Computers are already pervasive even in Boston and Singapore Computers are already human-centric are they for the birds? It's not really about computing we already know how to do that

*

So, what do we mean?

Pervasive

- Should be where we need them
 - not have to go to them or set them up

Human-centric

- Computers should adapt to humans
 - computation enters our world/environment

Computing

- Computer-mediated function
 - digital media

*

Look back to see ahead

Monolithic Programs & Hardware
 Decompose into interactive pieces
 Compose to build large thing
 Continue decomposing into autonomous, interacting components

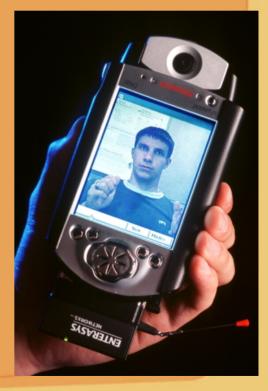
Finding and naming stuff

Few items
Use list
Many items
Use heirarchy
Very many items
Use multi-index

Organization of material

Top-down

- would be nice to start writing apps
- but we are not there yet
- Bottom-up
 - Build on what is known
 - Keyboard, mouse, pen
 - Location, Speech, Multimodal
 - Integrative Technologies


H21 components

Hardware

- iPAQ
- Backpaq
- Wireless Communication
- Location sensing

Software

- Linux
- Landcam
- Galaxy Audio Interface
- Cricket Location Reporting

iPAQ 3870

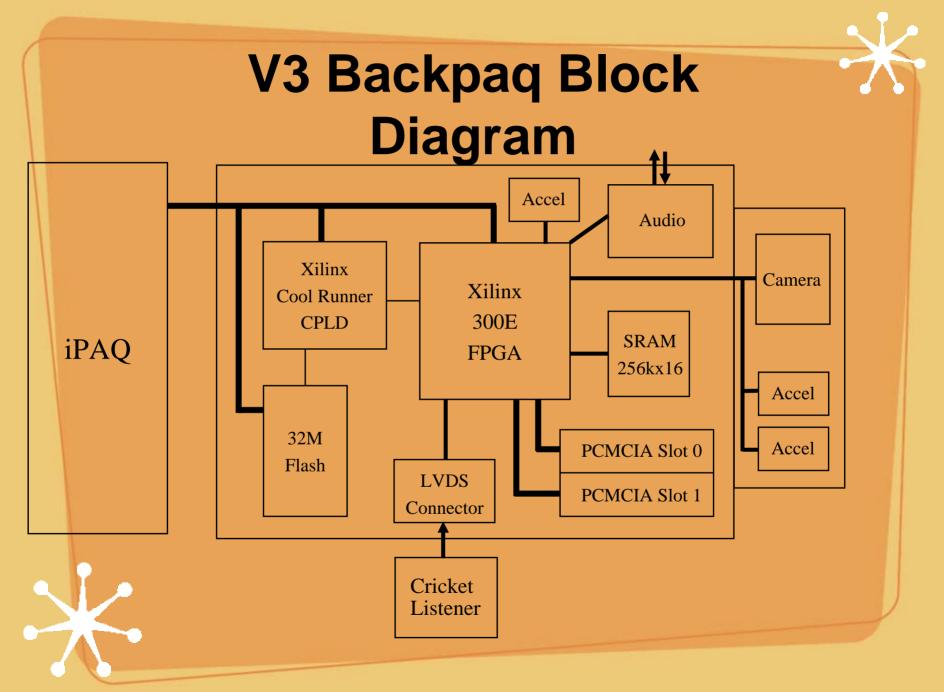
3870 iPAQ

- 206 MHz Strong Arm
- 64 Mbytes SDRAM
- 32 Mbytes flash storage
- Bluetooth
- SD/MMC card slot
- 16 bit color display

5500 iPAQ

- 400 MHz Xscale
- 128 Mbytes SDRAM
- -48 Mbytes flash storage
- Bluetooth & WiFi
- SD/MMC card slot
- 16 bit color display

Linux on H21

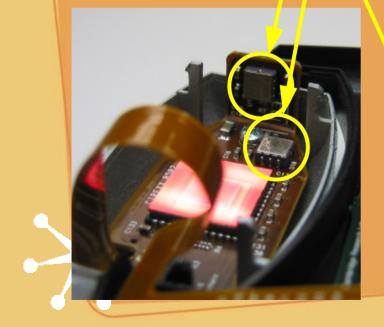

- Why Linux?
 - Linux allows full access to all software
 - Common development with desktop
 - Can use open source code from many sources
 - Porting Linux to a handheld device
 - More difficult than standard PC or Laptop
 - Non-standard interfaces (screen, control FPGAs, touch screen, …)
 - Requires rewritable Flash ROMs
 - For iPaq, port done by HP's Cambridge Research Lab

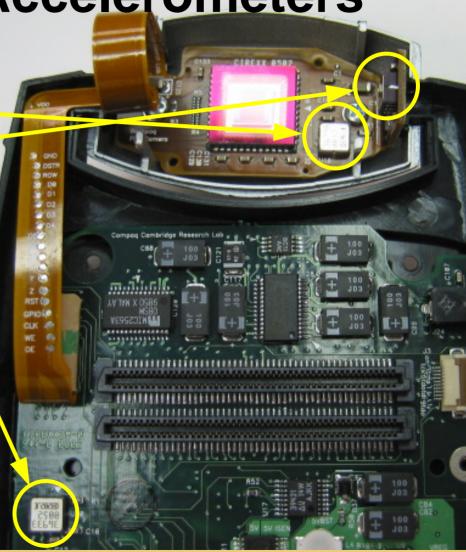
H21 Backpaq Redesigned BackPaq (Version 3)

- - Philips imager (640x480 CMOS color imager UPA1022)
 - Larger FPGA (Xilinx Virtex 300E)
 - 256k x 16 SRAM
 - Lower power
 - 3-axis accelerometer in camera housing
 - 2-axis accelerometer in Backpaq
 - Dual PCMCIA slots
 - Audio input/output codec and headset jac
 - 32 MBytes Flash in Backpaq
 - LVDS Connector from FPGA pins

Lion Battery

6.893 Spring 2004: Introduction Lany Rudolph


Philips Imager


- Philips UPA1022 Imager
 - 640x480 CMOS
 - Improved image processing
 - 9 bits/pixel/color
 - Fixed focus optics

Additional Accelerometers

Three Accelerometers:

One in camera plane One perpendicular One on Backpaq PC'3

Accelerometer Linux Devices

- 2-Axis accelerometer (on main PCB)
 - /dev/backpaq/accel
 - Each read returns X and Y acceleration values
- 2-Axis accelerometer (on camera PCB)
 - /dev/backpaq/cam_accel
 - Each read returns X and Y acceleration values
- 3-Axis accelerometer (in camera housing)
 - /dev/backpaq/cam_accel_xyz
 - Created from 2 perpendicular 2-axis accelerometers
 - Each read returns X, Y and Z acceleration values

Reading the Accelerometers

- Linux character device
- Open the device:
 - fd = open("/dev/backpaq/accel",O_RDONLY | O_NOCTTY);

Read from the device

struct h3600_backpaq_accel_data accel_buffer;

read(fd,&accel_buffer,sizeof(accel_buffer));

The structure returned:

struct h3600_backpaq_accel_data {

- short x_acceleration;
 - short y_acceleration;

From:

http://cvs.handhelds.org/cgi-bin/viewcvs.cgi/apps/backpaq/oneko/

Audio Headset Jack

Mono-input / Mono-output

- Same codec as iPAQ
- Driver and FPGA code under development now
- Cell phone headset connector (2.5mm)

SRAM

64K 16-bit words

- Cypress CY7C1021BV-33-10BAC
- 10ns Asynchronous SRAM
- Connected to FPGA
- Planned for use in image processing on FPGA

PCMCIA Slots

- Dual PCMCIA Slots
- 16-bit cards (Not CardBus) supported today
- Pins driven directly from the FPGA
 - Hardware supports CardBus cards
 - Could implement CardBus controller in FPGA

LVDS Connector

- Low Voltage Differential Signaling
 - 10 differential signal pairs
 - or 20 single signals
 - Driven from Xilinx 300E FPGA
 - 5 Power and 5 ground pins
 - 30 pin flex cable ZIF connector

Backpaq FPGA

Controls Backpaq functionality:

- Camera
- Accelerometers
- PCMCIA Slots
- Audio
- LVDS Connector
- SRAM

Reprogramable

- cat fpga.bin > /dev/backpaq/fpga
- Automatically loaded from (/etc/fpga.bin) on each power cycle
- Open source VHDL (8K lines)
 - http://cvs.handhelds.org/cgi-bin/viewcvs.cgi/mercury/backpaq/fpga_fifo_test/

Xilinx XCV300E

Package XCV300E-FG456

- Wire-bond Fine-pitch BGA (1.0 mm ball spacing)
- 23mm x 23mm
- 312 pins
- □ 1.8V
- 0.18 µm six layer metal process
- Logic
 - 412K System gates (20-30% used as RAM)
 - 32 x 48 CLB Array (3072 slices)
 - 6912 Cells (4-input LUT + Register)
 - 6144 Flip-flops
 - 128K ram bits in 32 blocks + max 96k distributed memory

References

- Oxygen Overview
 - http://oxygen.lcs.mit.edu
- Linux on handheld devices
 - http://handhelds.org
 - http://oxy.lcs.mit.edu
- Example Source Code
 - http://cvs.handhelds.org/cgibin/viewcvs.cgi/apps/backpag/oneko/
 - VHDL for FPGA
 - <u>http://cvs.handhelds.org/cgibin/viewcvs.cgi/mercury/backpaq/fpga_fifo_test/</u>

Oxygen Integration Scenario Demonstration

Video Conference Migration

Location Aware Computing

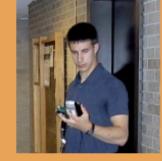
- Computer:
- Knows where it is
- Uses the best available resources

Automatically transitions between resources

Mobile Video Conference

Best Available Resource

- Cell modem
- Audio conferencing on H21


Inside

Outside

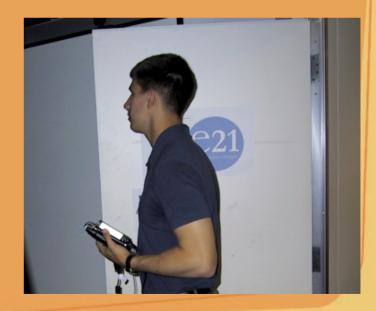
- 802.11b wireless network
- Video conferencing with H21 camera
- Audio conferencing on H21

In E21

- Video projector
- High quality microphone
- Higher frame rate camera
- -Wired network connection
- Higher quality compression using faster CPU

Location Awareness

- Goal: Automatically determine location
- Technology:
- Cricket Location System
 - Detect transition into the building
 - Detect transition into the E21
 - Accelerometers in H21
 - Detect H21 being placed on the tab
 - Future:
 - Network monitoring


Switch Between Network Resources

- Goal: Seamless network transitions
 - Cell modem outside
 - 802.11b wireless inside
 - Technology:
 - Migrate

Switch Between Physical Resources

- Goal: Transition to best available equipment automatically
 - iPAQ: camera, microphone, speaker, screen
 - E21: camera, microphone, speaker, projector
- Technology:
- MetaGlue

Location Aware Computing

- Computer:
- Knows where it is
- Uses the best available resources
 - Automatically transitions between resources
 - Move around in the real world

One More Time

Future Mobility Technology

- Goal: Self-mobile computing
- **Technology: Teleportation**
- **Status: Testing on inanimate objects**

