
Sept. 2003 © 1999-2003 Guido van Rossum 1

What's New in Python?
"Not your usual list of new features"

Stanford CSL Colloquium, October 29, 2003;
BayPiggies, November 13, 2003

Guido van Rossum

Elemental Security

guido@python.org
guido@elementalsecurity.com

Sept. 2003 © 1999-2003 Guido van Rossum 2

Sept. 2003 © 1999-2003 Guido van Rossum 3

Talk Overview

• About me

• About Python

• Case study 1: iterators and generators

• Case study 2: new classes and descriptors

• Question Time

Sept. 2003 © 1999-2003 Guido van Rossum 4

About Me

• Age 4: first Lego kit

• Age 10: first electronics kit (with two transistors)

• Age 18: first computer program (on punched cards)

• Age 21: first girlfriend :-)

• 1982: "drs" math degree; joined CWI in Amsterdam

• 1987: first worldwide open source release

• 1989: started work on Python in spare time

• 1995: moved to Virginia, USA to join CNRI

• 2000: got married

• 2001: became a father

• 2003: moved to California to join Elemental Security

Sept. 2003 © 1999-2003 Guido van Rossum 5

About Elemental Security

• Enterprise security software

• Early stage startup in stealth mode

• Using lots of Python

• We're hiring!

• See http://www.elementalsecurity.com

Sept. 2003 © 1999-2003 Guido van Rossum 6

Sept. 2003 © 1999-2003 Guido van Rossum 7

About Python

"The promotional package"

Sept. 2003 © 1999-2003 Guido van Rossum 8

Executive Summary

• Dynamically typed object-oriented language

• Python programs look like executable pseudo-code

• Supports multiple paradigms:

– procedural, object-oriented, some functional

• Extensible in C, C++, Fortran, ...

• Used by:

– Google, ILM, NASA, Red Hat, RealNetworks, ...

• Written in portable ANSI C (mostly...)

• Runs on:

– Unix, Windows, Mac, Palm, VxWorks, PlayStation 2, ...

• Jython: Java version, translates to Java byte code

Sept. 2003 © 1999-2003 Guido van Rossum 9

Why Use Python?

• Dynamic languages are more productive

• Python code is more readable

• Python code is more maintainable

• Python has fast built-in very high-level data types

• Developer time is more expensive than CPU time

When Should You Not Use Python (Yet)?

• Things like packet filters, MP3 codecs, etc.

• Instead, write in C/C++ and wrap Python around it

Sept. 2003 © 1999-2003 Guido van Rossum 10

Example Function

• def gcd(a, b):
"Greatest common divisor of two integers"
while b != 0:

a, b = b, a%b
return a

• Note:

– no declarations

– indentation+colon for statement grouping

– doc string part of function syntax

– parallel assignment (to swap a and b: "a, b = b, a")

Sept. 2003 © 1999-2003 Guido van Rossum 11

Sample Use Areas

• Server-side web programming (CGI, app servers)

• Client-side web programming (HTML, HTTP, ...)

• XML processing (including XML-RPC and SOAP)

• Databases (Oracle, MySQL, PostgreSQL, ODBC, ...)

• GUI programming (Qt, GTK+, Tcl/Tk, wxPython, ...)

• Scientific/numeric computing (e.g. LLNL)

• Testing (popular area for Jython)

• Scripting Unix and Windows

• Rapid prototyping (e.g. at Google)

• Programming education (e.g. Oxford physics)

– from middle school to college

Sept. 2003 © 1999-2003 Guido van Rossum 12

Standard Library

• File I/O, socket I/O, web protocols (HTTP, CGI, ...)

• XML, HTML parsing (DOM, SAX, Expat)

• Regular expressions (using standard Perl re syntax)

• compression (gzip/zlib, bz2), archiving (zip, tar)

• math, random, checksums, algorithms, data types

• date/time/calendar

• threads, signals, low-level system calls

• Python introspection, profiling, debugging, testing

• email handling

• and much, much more!

– and 10x more in 3rd party packages (e.g. databases)

Sept. 2003 © 1999-2003 Guido van Rossum 13

Python Community

• Python is Open Source software; freely distributable

• Code is owned by Python Software Foundation

– 501(c)(3) non-profit taking tax-deductible donations

– merit-based closed membership (includes sponsors)

• License is BSD-ish (no "viral" GPL-like clause)

• Users meet:

– on Usenet (comp.lang.python)

– on IRC (#python at irc.freenode.net)

– at local user groups (e.g. www.baypiggies.net)

– at conferences (PyCon, EuroPython, OSCON)

• Website: www.python.org (downloads, docs, devel)

Sept. 2003 © 1999-2003 Guido van Rossum 14

Python Development Process

• Nobody gets paid to work full-time on core Python

– Though some folks get paid for some of their time

• their employers use Python and need enhancements

• The development team never sleeps

– For example, for the most recent release:

• release manager in Australia

• key contributors in UK and Germany

• doc manager and Windows expert in Virginia

• etc.

• Key tools: email, web, CVS, SourceForge trackers

– IRC not so popular, due to the time zone differences

Sept. 2003 © 1999-2003 Guido van Rossum 15

Python Enhancement Proposals (PEP)

• RFC-like documents proposing new or changed:

– language features

– library modules

– even development processes

• Discussion usually starts in python-dev mailing list

• Wider community discussion on Usenet

• BDFL approval required to go forward

– BDFL = "Benevolent Dictator For Life" (that's me :-)

– this is not a democracy; let Python have my quirks

– we don't want design by committee or majority rule

– the PEP system ensures everybody gets input though

Sept. 2003 © 1999-2003 Guido van Rossum 16

Python Release Philosophy

• "Major releases": 2.0 -> 2.1 -> 2.2 -> 2.3
– 12-18 month cycle

– Focus on new features

– Limited backward incompatibilities acceptable
• usually requires deprecation in previous major release

• "Minor releases": e.g. 2.3 -> 2.3.1 -> 2.3.2
– 3-9 month cycle

– Focus on stability; zero backward incompatibilities

– One previous major release still maintained

• "Super release": 3.0 (a.k.a. Python 3000 :-)
– Fix language design bugs (but nothing like Perl 6.0 :-)

– Don't hold your breath (I'll need to take a sabbatical)

Sept. 2003 © 1999-2003 Guido van Rossum 17

Case Study 1:
Iterators and Generators

"Loops generalized and turned inside out"

Sept. 2003 © 1999-2003 Guido van Rossum 18

Evolution of the 'For' Loop

• Pascal: for i := 0 to 9 do ...

• C: for (i = 0; i < 10; i++) ...

• Python: for i in range(10): ...

• General form in Python:

for <variable> in <sequence>:
 <statements>

• Q: What are the possibilities for <sequence>?

Sept. 2003 © 1999-2003 Guido van Rossum 19

Evolution of Python's Sequence

• Oldest: built-in sequence types: list, tuple, string

– indexed with integers 0, 1, 2, ... through len(seq)-1

• for c in "hello world": print c

• Soon after: user-defined sequence types

– class defining __len__(self) and __getitem__(self, i)

• Later: lazy sequences: indeterminate length

– change to for loop: try 0, 1, 2, ... until IndexError

• Result: pseudo-sequences became popular

– these work only in for-loop, not for random access

Sept. 2003 © 1999-2003 Guido van Rossum 20

Python 1.0 For Loop Semantics

• for <variable> in <sequence>:
 <statements>

• Equivalent to:

• seq = <sequence>
ind = 0
while ind < len(seq):
 <variable> = seq[ind]
 <statements>
 ind = ind + 1

Sept. 2003 © 1999-2003 Guido van Rossum 21

Python 1.1...2.1 For Loop Semantics

• for <variable> in <sequence>:
 <statements>

• Equivalent to:

• seq = <sequence>
ind = 0
while True:
 try:
 <variable> = seq[ind]
 except IndexError:
 break
 <statements>
 ind = ind + 1

Sept. 2003 © 1999-2003 Guido van Rossum 22

Example Pseudo-Sequence

• class FileSeq:

def __init__(self, filename): # constructor
self.fp = open(filename, "r")

def __getitem__(self, i): # i is ignored
line = self.fp.readline()
if line == "":

raise IndexError
else:

return line.rstrip("\n")

• for line in FileSeq("/etc/passwd"):
print line

Sept. 2003 © 1999-2003 Guido van Rossum 23

Problems With Pseudo-Sequences

• The __getitem__ method invites to random access

– which doesn't work of course

– class authors feel guilty about this

• and attempt to make it work via buffering

• or raise errors upon out-of-sequence access

• both of which waste resources

• The for loop wastes time

– passing an argument to __getitem__ that isn't used

– producing successive integer objects 0, 1, 2, ...

• (yes, Python's integers are real objects)

– (no, encoding small integers as pseudo-pointers isn't faster)

» (no, I haven't actually tried this, but it was a nightmare in ABC)

Sept. 2003 © 1999-2003 Guido van Rossum 24

Solution: The Iterator Protocol (2.2)

• for <variable> in <iterable>:
 <statements>

• Equivalent to:

• it = iter(<iterable>)
while True:
 try:
 <variable> = it.next()
 except StopIteration:
 break
 <statements>
 # There's no index to increment!

Sept. 2003 © 1999-2003 Guido van Rossum 25

Iterator Protocol Design

• Many alternatives were considered and rejected

• Can't use sentinel value (list can contain any value)

• while it.more():
 <variable> = it.next()
 <statements>
– Two calls are twice as expensive as one

• catching an exception is much cheaper than a call

– May require buffering next value in iterator object

• while True:
 (more, <variable>) = it.next()
 if not more: break
 <statements>
– Tuple pack+unpack is more expensive than exception

Sept. 2003 © 1999-2003 Guido van Rossum 26

Iterator FAQ

• Q: Why isn't next() a method on <iterable>?

A: So you can nest loops over the same <iterable>.

• Q: Is this faster than the old way?

A: You bet! Looping over a builtin list is 33% faster.
 This is because the index is now a C int.

• Q: Are there incompatibilities?

A: No. If <iterable> doesn't support the iterator
 protocol natively, a wrapper is created that
 calls __getitem__ just like before.

• Q: Are there new possibilities?

A: You bet! dict and file iterators, and generators.

Sept. 2003 © 1999-2003 Guido van Rossum 27

Dictionary Iterators

• To loop over all keys in a dictionary in Python 2.1:

– for key in d.keys():
 print key, "->", d[key]

• The same loop in Python 2.2:

– for key in d:
 print key, "->", d[key]

• Savings: the 2.1 version copies the keys into a list

• Downside: can't mutate the dictionary while looping

• Additional benefit: you can now write "if x in d:" too
instead of "if d.has_key(x):"

• Other dictionary iterators:

– d.iterkeys(), d.itervalues(), d.iteritems()

Sept. 2003 © 1999-2003 Guido van Rossum 28

File Iterators

• To loop over all lines of a file in Python 2.1:

– line = fp.readline()
while line:
 <statements>
 line = fp.readline()

• And in Python 2.2:

– for line in fp:
 <statements>

– 40% faster than the 'while' loop

• (which itself is 10% faster compared to Python 2.1)

• most of the savings due to streamlined buffering

• using iterators cuts down on overhead and looks better

Sept. 2003 © 1999-2003 Guido van Rossum 29

Generator Functions

• Remember coroutines?

• Or, think of a parser and a tokenizer:

– the parser would like to sit in a loop and occasionally
ask the tokenizer for the next token...

– but the tokenizer would like to sit in a loop and
occasionally give the parser the next token

• How can we make both sides happy?

– threads are way too expensive to solve this!

• Traditionally, one of the loops is coded "inside-out"
(turned into a state machine):

– code is often hard to understand (feels "inside-out")

– saving and restoring state can be expensive

Sept. 2003 © 1999-2003 Guido van Rossum 30

Two Communicating Loops

• Generator functions let you write both sides
(consumer and producer) as a loop, for example:

– def tokenizer(): # producer (a
generator)
 while True:
 ...
 yield token
 ...

– def parser(tokenStream): # consumer
 while True:
 ...
 token = tokenStream.next()
 ...

Sept. 2003 © 1999-2003 Guido van Rossum 31

Joining Consumer and Producer

• tokenStream = tokenizer(); parser(tokenStream)

• The presence of yield makes a function a generator

• The tokenStream object is an iterator

• The generator's stack frame is prepared, but it is
suspended after storing the arguments

• Each time its next() is called, the generator is
resumed and allowed to run until the next yield

• The caller is suspended (that's what a call does!)

• The yielded value is returned by next()

• If the generator returns, next() raises StopIteration

• "You're not supposed to understand this"

Sept. 2003 © 1999-2003 Guido van Rossum 32

Back To Planet Earth

• Generator functions are useful iterator filters

• Example: double items: A B C D -> A A B B C C D D

– def double(it):
 while True:
 item = it.next()
 yield item
 yield item

• Example: only even items: A B C D E F -> A C E

– def even(it):
 while True:
 yield it.next()
 xx = it.next() # thrown away

• Termination: StopIteration exception passed thru

Sept. 2003 © 1999-2003 Guido van Rossum 33

Generators in the Standard Library

• tokenize module (a tokenizer for Python code)

– old API required user to define a callback function to
handle each token as it was recognized

– new API is a generator that yields each token as it is
recognized; much easier to use

– program transformation was trivial:

• replaced each call to "callback(token)" with "yield token"

• difflib module (a generalized diff library)

– uses yield extensively to avoid incarnating long lists

• os.walk() (directory tree walker)

– generates all directories reachable from given root

– replaces os.path.walk() which required a callback

Sept. 2003 © 1999-2003 Guido van Rossum 34

Stop Press! New Feature Spotted!

• Consider list comprehensions:

– [x**2 for x in range(5)] -> [0, 1, 4, 9, 16]

• Python 2.4 will have generator expressions:

– (x**2 for x in range(5)) -> "iter([0, 1, 4, 9, 16])"

• Why is this cool?

– sum(x**2 for x in range(5)) -> 30

• computes the sum without creating a list

• hence faster

– can use infinite generators (if accumulator truncates)

Sept. 2003 © 1999-2003 Guido van Rossum 35

Case Study 2:
Descriptors

"Less dangerous than metaclasses"

Sept. 2003 © 1999-2003 Guido van Rossum 36

Bound and Unbound Methods

• As you may know, Python requires 'self' as the first
argument to method definitions:

– class C: # define a class...

 def meth(self, arg): # ...which defines a
method
 print arg**2

– x = C() # create an instance...

– x.meth(5) # ...and call its method

• A lot goes on behind the scenes...

• NB: classes and methods are runtime objects!

Sept. 2003 © 1999-2003 Guido van Rossum 37

Method Definition Time

• A method defined like this:

– def meth(self, arg):
 ...

• is really just a function of two arguments

• You can play tricks with this:

– def f(a, b): # function of two arguments
 print b

– class C: # define an empty class
 pass

– x = C() # create an instance of the class

– C.f = f # put the function in the class

– x.f(42) # and voila! magic :-)

Sept. 2003 © 1999-2003 Guido van Rossum 38

Method Call Time

• The magic happens at method call time

• Actually, mostly at method lookup time
– these are not the same, you can separate them:

• "xf = x.f; xf(42)" does the same as "x.f(42)"

• "x.f" is the lookup and "xf(42)" is the call

• If x is an instance of C, "x.f" is an attribute lookup
– this looks in x's instance variable dict (x.__dict__)

– then in C's class variable dict (C.__dict__)

– then searches C's base classes (if any), etc.

• Magic happens if:
– f is found in a class (not instance) dict, and

– what is found is a Python function

Sept. 2003 © 1999-2003 Guido van Rossum 39

Binding a Function To an Instance

• Recap:

– we're doing a lookup of x.f, where x is a C instance

– we've found a function f in C.__dict__

• The value of x.f is a bound method object, xf:

– xf holds references to instance x and function f

– when xf is called with arguments (y, z, ...), xf turns
around and calls f(x, y, z, ...)

• This object is called a bound method

– it can be passed around, renamed, etc. like any object

– it can be called as often as you want

– yes, this is a currying primitive! xf == "curry(x, f)"

Sept. 2003 © 1999-2003 Guido van Rossum 40

Magic Is Bad!

• Why should Python functions be treated special?

• Why should they always be treated special?

Sept. 2003 © 1999-2003 Guido van Rossum 41

Magic Revealed: Descriptors

• In Python 2.2, the class machinery was redesigned
to unify (user-defined) classes with (built-in) types

– The old machinery is still kept around too (until 3.0)

– To define a new-style class, write "class C(object): ..."

• Instead of "if it's a function, do this magic dance",
the new machinery asks itself:

– if it supports the descriptor protocol, invoke that

• The descriptor protocol is a method named __get__

• __get__ on a function returns a bound method

Sept. 2003 © 1999-2003 Guido van Rossum 42

Putting Descriptors To Work

• Static methods (that don't bind to an instance)

– a wrapper around a function whose __get__ returns
the function unchanged (and hence unbound)

• Class methods (that bind to the class instead)

– returns curry(f, C) instead of curry(f, x)

• to do this, __get__ takes three arguments: (f, x, C)

• Properties (computed attributes done right)

– __get__ returns f(x) rather than curry(f, x)

– __set__ method invoked by attribute assignment

– __delete__ method invoked by attribute deletion

– (__set__, __delete__ map to different functions)

Sept. 2003 © 1999-2003 Guido van Rossum 43

Properties in Practice

• If you take one thing away from this talk,
it should be how to create simple properties:

– class C(object): # new-style
class!
 __x = 0 # private variable

 def getx(self): # getter function
 return self.__x

 def setx(self, newx): # setter function
 if newx < 0: # guard
 raise ValueError
 self.__x = newx

 x = property(getx, setx) # property definition

Sept. 2003 © 1999-2003 Guido van Rossum 44

Useful Standard Descriptors

• Static methods:

– class C(object):
 def foo(a, b): # called without instance
 ...
 foo = staticmethod(foo)

• Class methods:

– class C(object):
 def bar(cls, a, b): # called with class
 ...
 bar = classmethod(bar)

• See: http://www.python.org/2.2.3/descrintro.html

Sept. 2003 © 1999-2003 Guido van Rossum 45

A Schizophrenic Property

• Challenge: define a descriptor which acts as a class
method when called on the class (C.f) and as an
instance method when called on an instance (C().f)

– class SchizoProp(object):

 def __init__(self, classmethod, instmethod):
 self.classmethod = classmethod
 self.instmethod = instmethod

 def __get__(self, obj, cls):
 if obj is None:
 return curry(self.classmethod, cls)
 else:
 return curry(self.instmethod, obj)

• Do Not Try This At Home! :-)

Sept. 2003 © 1999-2003 Guido van Rossum 46

Question Time

"If there's any time left :-)"

