== e]lemental
5"

What's New in Python?

"Not your usual list of new features"

Stanford CSL Colloquium, October 29, 2003;
BayPiggies, November 13, 2003

Guido van Rossum
Elemental Security

guido@python.org
guido@elementalsecurity.com

Sept. 2003 © 1999-2003 Guido van Rossum

Crneayowuin Cnakp
[NEXT SLIDE, PLEASE]

i x
s e
-

“,;,.;hﬂ,ﬂg m; ek ﬂ;!m‘ .,"5 N7 "ﬂ
P-"'" -n.u... ,-"-.-i..-,—.' 1 il r'illl =

Fom RE-BRUCATION e - — ﬁ_-
—p-
CAMPAIGMS, NOTHING IS BETTER

THAM THE ALToE SNTENT WLase S

L THERE's MO MALET LIST
LIME STALIN'S BULLET LiIsT S

COMBARE,
WHY ARE WE HAVING THIS MEETING
THE RATE OF INFORMATION TRAMSFER
5 ABYMPTOTICALLY APFROACHING

Edward Tufte, The Cognitive Style of PowerPoint

Talk Overview

e About me

e About Python

e (Case study 1: iterators and generators

e (Case study 2: new classes and descriptors
e Question Time

Sept. 2003 © 1999-2003 Guido van Rossum 3

Sept. 2003

About Me

Age 4: first Lego kit

Age 10: first electronics kit (with two transistors)
Age 18: first computer program (on punched cards)
Age 21: first girlfriend :-)

1982

1987:
1989:
1995:
2000:
2001:
2003:

: "drs" math degree; joined CWI in Amsterdam
first worldwide open source release

started work on Python in spare time

moved to Virginia, USA to join CNRI

got married

became a father

moved to California to join Elemental Security

© 1999-2003 Guido van Rossum 4

About Elemental Security

e Enterprise security software

e Early stage startup in stealth mode

e Using lots of Python

e We're hiring!

e See http://www.elementalsecurity.com

== e]lemental
@&”

Sept. 2003 © 1999-2003 Guido van Rossum 5

About Python

"The promotional package"

Sept. 2003 © 1999-2003 Guido van Rossum

Executive Summary

e Dynamically typed object-oriented language
e Python programs look like executable pseudo-code
e Supports multiple paradigms:
— procedural, object-oriented, some functional
e Extensible in C, C++, Fortran, ...
e Used by:
- Google, ILM, NASA, Red Hat, RealNetworks, ...
e Written in portable ANSI C (mostly...)
e Runs on:
- Unix, Windows, Mac, Palm, VxWorks, PlayStation 2, ...
e Jython: Java version, translates to Java byte code

Sept. 2003 © 1999-2003 Guido van Rossum 8

Why Use Python?

e Dynamic languages are more productive

e Python code is more readable

e Python code is more maintainable

e Python has fast built-in very high-level data types
e Developer time is more expensive than CPU time

When Should You Not Use Python (Yet)?

e Things like packet filters, MP3 codecs, etc.
e Instead, write in C/C++ and wrap Python around it

Sept. 2003 © 1999-2003 Guido van Rossum o)

Example Function

e def gcd(a, b):
"Greatest common divisor of two integers"

while b = 0:
a, b=D>b, a%b
return a
e Note:

- no declarations

— indentation+colon for statement grouping

— doc string part of function syntax

— parallel assignment (to swap a and b: "a, b = b, a")

Sept. 2003 © 1999-2003 Guido van Rossum 10

Sept. 2003

Sample Use Areas

Server-side web programming (CGI, app servers)
Client-side web programming (HTML, HTTP, ...)
XML processing (including XML-RPC and SOAP)
Databases (Oracle, MySQL, PostgreSQL, ODBC(, ...)
GUI programming (Qt, GTK+, Tcl/Tk, wxPython, ...)
Scientific/numeric computing (e.g. LLNL)

Testing (popular area for Jython)

Scripting Unix and Windows

Rapid prototyping (e.g. at Google)

Programming education (e.g. Oxford physics)

- from middle school to college

© 1999-2003 Guido van Rossum 11

Sept. 2003

Standard Library

File I/O, socket I/O, web protocols (HTTP, CGI, ...)
XML, HTML parsing (DOM, SAX, Expat)

Regular expressions (using standard Perl re syntax)
compression (gzip/zlib, bz2), archiving (zip, tar)
math, random, checksums, algorithms, data types
date/time/calendar

threads, signals, low-level system calls

Python introspection, profiling, debugging, testing
email handling

and much, much more!
- and 10x more in 3rd party packages (e.g. databases)

© 1999-2003 Guido van Rossum 12

Sept. 2003

Python Community

Python is Open Source software; freely distributable
Code is owned by Python Software Foundation

- 501(c)(3) non-profit taking tax-deductible donations

- merit-based closed membership (includes sponsors)
License is BSD-ish (no "viral" GPL-like clause)

Users meet:

— on Usenet (comp.lang.python)

— on IRC (#python at irc.freenode.net)

— at local user groups (e.g. www.baypiggies.net)
— at conferences (PyCon, EuroPython, OSCON)

Website: www.python.org (downloads, docs, devel)

© 1999-2003 Guido van Rossum 13

Python Development Process

e Nobody gets paid to work full-time on core Python

- Though some folks get paid for some of their time
e their employers use Python and need enhancements

e The development team never sleeps

- For example, for the most recent release:
e release manager in Australia
e key contributors in UK and Germany
e doc manager and Windows expert in Virginia

e efc.
o Key tools: email, web, CVS, SourceForge trackers

— IRC not so popular, due to the time zone differences

Sept. 2003 © 1999-2003 Guido van Rossum 14

Python Enhancement Proposals (PEP)

RFC-like documents proposing new or changed:

- language features

— library modules

— even development processes

e Discussion usually starts in python-dev mailing list
e Wider community discussion on Usenet

e BDFL approval required to go forward
- BDFL = "Benevolent Dictator For Life" (that's me :-)
— this is not a democracy; let Python have my quirks
- we don't want design by committee or majority rule
— the PEP system ensures everybody gets input though

Sept. 2003 © 1999-2003 Guido van Rossum 15

Python Release Philosophy

e "Major releases": 2.0 -> 2.1 -> 2.2 -> 2.3
- 12-18 month cycle
— Focus on new features

— Limited backward incompatibilities acceptable
e usually requires deprecation in previous major release

e "Minor releases": e.g. 2.3 -> 2.3.1 -> 2.3.2
- 3-9 month cycle
— Focus on stability; zero backward incompatibilities
— One previous major release still maintained
e "Super release": 3.0 (a.k.a. Python 3000 :-)
— Fix language design bugs (but nothing like Perl 6.0 :-)
— Don't hold your breath (I'll need to take a sabbatical)

Sept. 2003 © 1999-2003 Guido van Rossum 16

Case Study 1:
Iterators and Generators

"Loops generalized and turned inside out"

Sept. 2003 © 1999-2003 Guido van Rossum

17

Evolution of the 'For' Loop

e Pascal: fori:=0to9do...
e C: for(i=0;i<10; i++) ...

e Python: foriin range(10): ...

General form in Python:

for <variable> in <sequence>:
<statements>

Q: What are the possibilities for <sequence>"?

Sept. 2003 © 1999-2003 Guido van Rossum 18

Evolution of Python's Sequence

e Oldest: built-in sequence types: list, tuple, string
- indexed with integers O, 1, 2, ... through len(seq)-1

e for cin "hello world": print c

e Soon after: user-defined sequence types

— class defining __len__ (self) and __ getitem__ (self, i)

e Later: lazy sequences: indeterminate length

— change to for loop: try 0, 1, 2, ... until IndexError

e Result: pseudo-sequences became popular

- these work only in for-loop, not for random access

Sept. 2003 © 1999-2003 Guido van Rossum 19

Python 1.0 For Loop Semantics

e for <variable> in <sequence>:
<statements>

e Equivalent to:

e seq = <sequence>
ind =0
while ind < len(seq):
<variable> = seq[ind]
<statements>
ind =ind + 1

Sept. 2003 © 1999-2003 Guido van Rossum 20

Python 1.1...2.1 For Loop Semantics

e for <variable> in <sequence>:
<statements>

e Equivalent to:

e seq = <sequence>
ind =0
while True:
try:
<variable> = seq[ind]
except IndexError:
break
<statements>
ind =ind + 1

Sept. 2003 © 1999-2003 Guido van Rossum 21

Example Pseudo-Sequence

e class FileSeq:

def __init__ (self, filename): # constructor
self.fp = open(filename, "r")
def _ getitem__ (self, i): # iis ignored
line = self.fp.readline()
if line =="";
raise IndexError
else:

return line.rstrip("\n")

o for line in FileSeq("/etc/passwd"):
print line

Sept. 2003 © 1999-2003 Guido van Rossum 22

Problems With Pseudo-Sequences

e The _ getitem__ method invites to random access

— which doesn't work of course
— class authors feel guilty about this

e and attempt to make it work via buffering
e Or raise errors upon out-of-sequence access
e both of which waste resources

e The for loop wastes time

— passing an argument to __getitem__ that isn't used
— producing successive integer objects O, 1, 2, ...

e (yes, Python's integers are real objects)

- (no, encoding small integers as pseudo-pointers isn't faster)

» (no, I haven't actually tried this, but it was a nightmare in ABC)

Sept. 2003 © 1999-2003 Guido van Rossum 23

Solution: The Iterator Protocol (2.2)

e for <variable> in <iterable>:
<statements>

e Equivalent to:

e it = iter(<iterable>)
while True:
try:
<variable> = it.next()
except Stoplteration:
break
<statements>
There's no index to increment!

Sept. 2003 © 1999-2003 Guido van Rossum 24

Iterator Protocol Design

e Many alternatives were considered and rejected
e Can't use sentinel value (list can contain any value)

e while it.more():
<variable> = it.next()
<statements>

— Two calls are twice as expensive as one
e catching an exception is much cheaper than a call
- May require buffering next value in iterator object

e while True:
(more, <variable>) = it.next()
if not more: break
<statements>

- Tuple pack+unpack is more expensive than exception

Sept. 2003 © 1999-2003 Guido van Rossum 25

Iterator FAQ

: Why isn't next() a method on <jterable>"?
So you can nest loops over the same <ijterable>.
: Is this faster than the old way?

: You bet! Looping over a builtin list is 33% faster.
This is because the index is now a C int.

> 0 > O

: Are there incompatibilities?

: No. If <ijterable> doesn't support the iterator
protocol natively, a wrapper is created that
calls __getitem___ just like before.

o
> O

e Q: Are there new possibilities?
: You bet! dict and file iterators, and generators.

>

Sept. 2003 © 1999-2003 Guido van Rossum 26

Sept. 2003

Dictionary Iterators

To loop over all keys in a dictionary in Python 2.1:

— for key in d.keys():
print key, "->", d[key]

The same loop in Python 2.2:

— for key in d:
print key, "->", d[key]

Savings: the 2.1 version copies the keys into a list
Downside: can't mutate the dictionary while looping

Additional benefit: you can now write "if x in d:" too
instead of "if d.has_key(x):"

Other dictionary iterators:

- d.iterkeys(), d.itervalues(), d.iteritems()

© 1999-2003 Guido van Rossum 27

File Iterators

e To loop over all lines of a file in Python 2.1:

- line = fp.readline()
while line:
<statements>
line = fp.readline()

e And in Python 2.2:

— for line in fp:
<statements>

— 40% faster than the 'while' loop
e (which itself is 10% faster compared to Python 2.1)
e most of the savings due to streamlined buffering
e using iterators cuts down on overhead and looks better

Sept. 2003 © 1999-2003 Guido van Rossum 28

Generator Functions

e Remember coroutines?
e Or, think of a parser and a tokenizer:

— the parser would like to sit in a loop and occasionally
ask the tokenizer for the next token...

- but the tokenizer would like to sit in a loop and
occasionally give the parser the next token

e How can we make both sides happy?
— threads are way too expensive to solve this!

e Traditionally, one of the loops is coded "inside-out"
(turned into a state machine):

— code is often hard to understand (feels "inside-out")
— saving and restoring state can be expensive

Sept. 2003 © 1999-2003 Guido van Rossum 29

Two Communicating Loops

e Generator functions let you write both sides
(consumer and producer) as a loop, for example:

- def tokenizer(): # producer (a
generator)
while True:

yield token

- def parser(tokenStream): # consumer
while True:

token = tokenStream.next()

Sept. 2003 © 1999-2003 Guido van Rossum 30

Sept. 2003

Joining Consumer and Producer

tokenStream = tokenizer(); parser(tokenStream)

The presence of yield makes a function a generator
The tokenStream object is an iterator

The generator's stack frame is prepared, but it is
suspended after storing the arguments

Each time its next() is called, the generator is
resumed and allowed to run until the next yield

The caller is suspended (that's what a call does!)
The yielded value is returned by next()

If the generator returns, next() raises Stoplteration
"You're not supposed to understand this"

© 1999-2003 Guido van Rossum 31

Back To Planet Earth

e Generator functions are useful iterator filters

Example: double items: ABCD->AABBCCDD

— def double(it):
while True:
item = it.next()
yield item
yield item

e Example: only evenitems: ABCDEF->ACE

- def even(it):
while True:
yield it.next()
xX = it.next() # thrown away

e Termination: Stoplteration exception passed thru

Sept. 2003 © 1999-2003 Guido van Rossum 32

Generators in the Standard Library

e tokenize module (a tokenizer for Python code)

- old API required user to define a callback function to
handle each token as it was recognized

- new API is a generator that yields each token as it is
recognized; much easier to use

— program transformation was trivial:
e replaced each call to "callback(token)" with "yield token"
o difflib module (a generalized diff library)
— uses yield extensively to avoid incarnating long lists
e os.walk() (directory tree walker)
— generates all directories reachable from given root
- replaces os.path.walk() which required a callback

Sept. 2003 © 1999-2003 Guido van Rossum 33

Stop Press! New Feature Spotted!

e Consider list comprehensions:
- [x**2 for x in range(5)] -> [0, 1, 4, 9, 16]

e Python 2.4 will have generator expressions:
- (x**2 for x in range(5)) -> "iter([O, 1, 4, 9, 16])"

e Why is this cool?
- sum(x**2 for x in range(5)) -> 30
e computes the sum without creating a list
e hence faster

— can use infinite generators (if accumulator truncates)

Sept. 2003 © 1999-2003 Guido van Rossum 34

Sept. 2003

Case Study 2:
Descriptors

"Less dangerous than metaclasses”

© 1999-2003 Guido van Rossum

35

Bound and Unbound Methods

e As you may know, Python requires 'self' as the first
argument to method definitions:

— class C: # define a class...
def meth(self, arg): # ...which defines a
method
print arg**2
- x = C() # create an instance...
- X.meth(5) # ...and call its method

e A lot goes on behind the scenes...

® NB: classes and methods are runtime objects!

Sept. 2003 © 1999-2003 Guido van Rossum 36

Method Definition Time

e A method defined like this:
- def meth(self, arg):

e s really just a function of two arguments
e You can play tricks with this:

- def f(a, b): # function of two arguments

print b
— class C: # define an empty class
pass
- X = C() # create an instance of the class
- Cf=f # put the function in the class
- X.f(42) # and voila! magic :-)

Sept. 2003 © 1999-2003 Guido van Rossum 37

Method Call Time

e The magic happens at method call time

e Actually, mostly at method lookup time

- these are not the same, you can separate them:
o "Xf = x.f; xf(42)" does the same as "x.f(42)"
o "x.f" is the lookup and "xf(42)" is the call

e If X is an instance of C, "x.f" is an attribute lookup
— this looks in x's instance variable dict (x.__dict__)
— then in C's class variable dict (C.__dict_)
— then searches C's base classes (if any), etc.
e Magic happens if:
- fis found in a class (not instance) dict, and
— what is found is a Python function

Sept. 2003 © 1999-2003 Guido van Rossum 38

Binding a Function To an Instance

e Recap:
— we're doing a lookup of x.f, where x is a C instance
- we've found a function f in C.__dict___

e The value of x.f is a bound method object, xf:

— xf holds references to instance x and function f

- when xf is called with arguments (y, z, ...), xf turns
around and calls f(x, vy, z, ...)

e This object is called a bound method
— it can be passed around, renamed, etc. like any object
— it can be called as often as you want
- yes, this is a currying primitive! xf == "curry(x, f)"

Sept. 2003 © 1999-2003 Guido van Rossum 39

Magic Is Bad!

e Why should Python functions be treated special?

e Why should they always be treated special?

Sept. 2003 © 1999-2003 Guido van Rossum 40

Magic Revealed: Descriptors

e In Python 2.2, the class machinery was redesigned
to unify (user-defined) classes with (built-in) types

— The old machinery is still kept around too (until 3.0)
- To define a new-style class, write "class C(object): ..."

e Instead of "if it's a function, do this magic dance",
the new machinery asks itself:

— if it supports the descriptor protocol, invoke that

e The descriptor protocol is a method named __get_

° get__ on a function returns a bound method

Sept. 2003 © 1999-2003 Guido van Rossum 41

Putting Descriptors To Work

e Static methods (that don't bind to an instance)

— a wrapper around a function whose __get__ returns
the function unchanged (and hence unbound)

e (Class methods (that bind to the class instead)

- returns curry(f, C) instead of curry(f, x)

e to do this, _ get_ takes three arguments: (f, x, C)

e Properties (computed attributes done right)

- get__ returns f(x) rather than curry(f, x)
- set_ method invoked by attribute assignment

— _ delete__ method invoked by attribute deletion
- (__set__, delete__ map to different functions)

Sept. 2003 © 1999-2003 Guido van Rossum 42

Sept. 2003

Properties in Practice

If you take one thing away from this talk,
it should be how to create simple properties:

— class C(object): # new-style
class!
~x=0 # private variable
def getx(self): # getter function
return self.__ X
def setx(self, newx): # setter function
if newx < O: # guard

raise ValueError
self. X = newx

X = property(getx, setx) # property definition

© 1999-2003 Guido van Rossum 473

Useful Standard Descriptors

e Static methods:

— class C(object):
def foo(a, b): # called without instance

foo = staticmethod(foo)

e (Class methods:

— class C(object):
def bar(cls, a, b): # called with class

bar = classmethod(bar)

e See: http://www.python.org/2.2.3/descrintro.html

Sept. 2003 © 1999-2003 Guido van Rossum 44

A Schizophrenic Property

e Challenge: define a descriptor which acts as a class
method when called on the class (C.f) and as an
instance method when called on an instance (C().f)

— class SchizoProp(object):

def __init_ (self, classmethod, instmethod):
self.classmethod = classmethod
self.instmethod = instmethod

def _ get_ (self, obj, cls):
if obj is None:
return curry(self.classmethod, cls)
else:
return curry(self.instmethod, obj)

e Do Not Try This At Home! :-)

Sept. 2003 © 1999-2003 Guido van Rossum 45

Sept. 2003

Question Time

"If there's any time left :-)"

© 1999-2003 Guido van Rossum

46

