Cricket

Tutorial on using cricket location system

VIIVNUI UUMIJ

- Research prototype
 - build and then evaluate
- Useful mainly indoor environments
 - walls, ceilings not too far
- Recognize spaces, not just physical position
 - good boundary detection is important
 - doors, floors, etc.
- Preserve user's privacy
 - Big-brother can be a bother
 - user has choice to reveal location

Features

- Distributed architecture
 - No wired infrastructure
 - Easy deployment (no satellites)
 - Low maintenance
- Users are not tracked
 - Listeners are passive
- Integrates with a wide range of resource discovery systems

Cricket: Private location-support

No central beacon control or location database Passive Listeners + Active Beacons

No central beacon control or location database Passive Listeners + Active Beacons

Finding the distance

- distance = speed * time
 - want to find the distance
 - we know the speed
- How do we figure out time?
 - Radar: measure round-trip time
 - a cannot use it as it violates some goals

Finding the distance

- Synchronized clocks
 - receiver knows exactly when transmitter sent signal
 - how about sending signal first to sync clocks and then 2nd signal?

Finding the distance

- Use two different speed signals
 - both start at same time

$$d = s_1 * t_1 d = s_2 * t_2$$

We measure delay: $m = t_1 - t_2$

$$t_2 = m * s_1/(s_2 - s_1)$$

 $d = m * s_2 s_1/(s_2 - s_1)$

Location Estimation

Distance estimation via coupled RF and ultrasonic anals

Beacons send information on the RF channel with concurrent rasonic pulse

Uncoordinated Beacons

Multiple beacon transmissions are uncoordinated Different beacon transmissions can interfere

Causes inaccurate distance measurements at the listener

Multiple Beacons

- · Beacon transmissions are uncoordinated
- Ultrasonic signals reflect heavily
- Ultrasonic signals are pulses (no data)

These make the correlation problem hard and can lead to incorrect distance estimates

Solution

- Carrier-sense + randomized transmission
 - reduce chance of concurrent beacons
- Bounding stray signal interference
 - envelop all ultrasonic signals with RF
- Listener inference algorithm
 - Processing distance samples to estimate location

bounding stray signal Interference

- Engineer RF range to be <u>larger</u> than ultrasonic range
- Ensures that if listener can hear ultrasound, corresponding RF will also be heard

Interference

S =size of space advertisement

b = RF bit rate

r = ultrasound range

v =velocity of ultrasound

$$\frac{S}{b} > \frac{r}{v}$$

(RF transmission time) (Max. RF-US separation at the listener)

· No "unaccompanied" ultrasonic signal can be valid!

Bounding stray signal interference

Envelop ultrasound by RF
Interfering ultrasound causes RF signals to collide
Listener does a block parity error check

The reading is discarded...

Reflect Correct Space

Correct Beacon Placement

- Position beacons to detect the boundary
- Multiple Beacons per space are possible

Cricket Listener Output

Strings reported from Listeners

- When good RF and good ultrasound pulse heard:
 - "\$Cricket2,ver=3.0,space=MIT7,id=20,dist=4F,duration=1A"
- When only good RF heard, no ultrasound heard:
 - "\$Cricket2,ver=3.0,space=MIT7,id=20"
- When RF detected, but parity error detected:
 - "\$Cricket2,ver=3.0,err=rf" dist

Speed of Sound

Listener reports distance and duration in 15.625 KH counter cycles (64 microseconds each).

Assume speed of sound is 344.49 m/s then 22.047 nm/cycle

For 343.75 m/s = 22 mm/cycle

Need to subtract 36 units for delay from end of RF to start of US transmission.

Cricket Beacon LEDs

Debug Switch = UP

- Green LED = Transmit
- Red LED = Carried Sensed

Debug Switch = Down

 $\frac{\text{Green}}{\text{transmission}} \text{LED} = \text{Every 5}^{\text{th}}$

At Startup

- LEDs flash version number
- Red on, Green flash count = Major #
- Green on, Red flash count
 = Minor #

Power Switch

IIn = On

CIUREI DEACUII AIIIEIIIAS Receive antenna

Transmit a

Receive Antenna

Tor sensing transmission of other beacons

Fransmit Antenna

- Limit transmission distance
- Should not touch ultrasound
- Should not cover receive antenna

}reen Flash

Listener LEDs

 Received valid RF and ultrasound

Red Flash Once

Received Radio, but not ultrasound

Red+Green Flash

RF Error (e.g., parity error)

Red and Green always on

Listener not working correctly

Power On

Both LEDs flash together once

cricketd

Background program (demon) that reads serial port writes data to a socket

Command line arguments (defaults work correctly o paq)

- -T k Version 3 Listeners (with LEDs) (default)
- -T c Version 2 Listeners (without LEDs)
- S <port>Socket port number (default is 2947)
- -p <dev> Serial port device name (default "/dev/ttySAO")
- -s <baud> Baud rate of serial port (default is 9600)
- -h Help

П

-D < num > Debug level

Hardware Design

- http://nms.lcs.mit.edu/projects/cricket
- http://nms.lcs.mit.edu/cricket/fab
 - User: cricket-fab
 - Password: recipe
- http://nms.lcs.mit.edu/cricket/distrib
 - User: cricket
 - Password: locationrules