
1536-1268/02/$17.00 © 2002 IEEE PERVASIVEcomputing 51

ConChat: A Context-
Aware Chat Program

W
hen two people chat face to face,
they know the conversation’s
context—each knows, for exam-
ple, the other person’s location,
what he or she is doing, who else

is nearby, and the room’s condition (lighting, sound,
and so forth). There is also significant communica-
tion through facial and other nonverbal cues. Know-
ing such information makes the conversation richer.
However, when you chat with someone electroni-
cally, you don’t get to exchange this type of contex-
tual information.

Recently, there has been great
interest in making applications
context aware so that they can
adapt to different situations and
be more receptive to users’ needs.
In particular, text-based chat pro-
grams could greatly benefit from
being context aware. Today’s

chat programs let users set their status (such as “out
to lunch” or “on the phone”), but they generally
don’t let the two parties exchange any other type of
contextual information. Systems such as Babble1

and Hubbub2 provide some contextual information
(see the “Related Work” sidebar), but they don’t let
users share the wide variety of contexts that could
be sensed in a face-to-face conversation.

With the advent of pervasive computing, we now
have sensors that can detect a wide variety of con-
texts. For example, sensors can detect who is in a
room as well as the room’s temperature, lighting, and
noise level. Recent work even lets us sense the user’s
mood via emotion-recognition software3 that inter-

prets facial expressions. If both parties are in perva-
sive computing environments, they can sense and
exchange such contextual information. Our context-
aware chat program, ConChat, lets users query their
chat partner’s context through a side channel—that
is, the users can exchange contextual information
outside the main channel of conversation.

ConChat uses contextual information to improve
electronic communication. Using contextual cues,
users can infer during a conversation what the other
person is doing and what is happening in his or her
immediate surroundings. For example, if a user
learns that the other person is talking with somebody
else or is involved in some urgent activity, he or she
knows to expect a slower response. Conversely, if
the user learns that the other person is sitting in a
meeting directly related to the conversation, he or
she then knows to respond more quickly. Also, by
informing users about the other person’s context and
tagging potentially ambiguous chat messages, Con-
Chat explores how context can improve electronic
communication by reducing semantic conflicts.

The context model
Transferring context between parties requires a

common model for context. ConChat’s model is
based on first-order predicate calculus and Boolean
algebra. It covers the wide variety of available con-
texts and supports various operations, such as con-
junction and disjunction of contexts and quantifiers
on contexts. It allows the creation of complex first-
order expressions involving context, so it is possi-
ble to write various rules, prove theorems, and eval-
uate queries.

ConChat is a context-aware chat program that enriches electronic
communication by providing contextual information and resolving
potential semantic conflicts between users.

C O N T E X T - A W A R E C O M P U T I N G

Anand Ranganathan, Roy H.
Campbell, Arathi Ravi, and
Anupama Mahajan
University of Illinois at
Urbana-Champaign

Basic structure: The atomic context
We represent context through a first-

order predicate with four arguments. We
borrowed the predicate’s structure from
English, where a simple sentence often
takes the form of <subject> <verb> <object>. An
atomic context uses this structure along
with a context type. We define it as

Context(<ContextType>, <Subject>, <Relater>,
<Object>)

Using such atomic contexts, we can con-
struct more complex contexts (discussed
later). ContextType refers to the type of con-
text the predicate is describing, Subject is the
person, place, or thing with which the con-
text is concerned, Object is a value associated
with the subject, and Relater is something
that relates the subject and object. Relater
can be a comparison operator (such as =,
>, or <), verb, or preposition.

Example context predicates include

• Context(Location, Chris, Entering, Room 3231)
• Context(Temperature, Room 3231, Is, 98 F)
• Context(Social Relationship, Venus, Sister, Serena)
• Context(Stock Quote, Msft, >, $60)
• Context(Printer Status, Srgalw1 Printer Queue, Is, Empty)
• Context(Time, New York, Is, 12:00 01/01/01)

The values of the Subject, Relater, and Object
arguments depend on the ContextType argu-
ment’s value. For example, if the ContextType
is “location,” then Subject can be a person
or object, Relater can be a preposition such
as “entering,” ”leaving,” or “in,” and Object
must be a location.

Although this model for context is sim-
ple, it can express most basic context types.
Furthermore, it is independent of any imple-
mentation details such as programming lan-
guage, operating system, or middleware.

Operations on contexts
The power of a model based on first-order

logic is that it is possible to perform com-
plex operations such as Boolean operations
and quantifications on context predicates.
These operations let us express some of the
more complex situations we see in real life.

Boolean operations. We can construct

more complex context expressions by per-
forming Boolean operations such as con-
junction, disjunction, and negation over
context predicates. For example,

Context(Location, Manuel, Entering, Room 3211) ∧
Context(Social Activity, Meeting, In, Room 3211)

refers to the context that Manuel is entering
Room 3211, where a meeting is occurring.

Context(Environment Lighting, Room 3234, Is, Off) ∨
Context(Environment Lighting, Room 3234, Is, Dim)

explains that Room 3234’s lighting is either
off or dim.

NOT Context(Location, Manuel, In, Room 3211)

states that Manuel is not in Room 3211.
For ease of representation, we can com-

bine one of the arguments when the other
arguments are the same. For example, if
the type, relater, and object fields of two
different predicates in an expression are
the same, we can combine their subject
fields, leaving us with just one predicate.
For example, we can write

Context(Environment Lighting, Room 3234, Is, Off) ∨
Context(Environment Lighting, Room 3234, Is, Dim)

as

Context(Environment Lighting, Room 3234, Is, Off ∨
Dim)

Quantification. One or more arguments
of the context predicate can be a variable
and then quantify over this variable. This
lets us parameterize the context and rep-
resent a much richer set of contexts. The
model allows both universal and existential
quantification over variables.

The existential quantifier (“there exists”)
indicates that the context that follows is true
for at least one value of the variable in the
variable’s indicated scope. Thus, ∃S X Con-
text(t,x,r,o) is true if and only if Context(t,x,r,o) is
true for some value of x belonging to the set
S. For example, to express that Chris is
in some location, we can write ∃Location Y Con-
text(Location, Chris, In, Y).

The universal quantifier (“for all”) indi-
cates that the context that follows is true
for all values of the variable that lie in the
variable’s scope. Thus, ∀S X Context(t,x,r,o) is
true if and only if Context(t,x,r,o) is true for
some value of X belonging to the set S. For
example, to refer to all people in Room
3231, we write an expression of the form
∀People X Context(Location, X, In, Room 3231).

We can easily construct more complex
contexts by performing Boolean opera-
tions and quantifications on context pred-
icates. For example, a room controller
application could associate the context
∃Person S Context(Location, S, Entering, Room 3234) with
the action of playing a welcome message
whenever a person enters Room 3234.

The model uses the many-sorted logic
model, where quantification is done only
over a specific domain of values. That is,
we define various sets of values (such as
person, location, stock symbol, and so
forth). Thus, the Person set consists of the
names of all people in our system, Loca-
tion consists of all valid locations in our
system (such as room numbers and hall-
ways), and Stock Symbol consists of all
stock symbols in which the system is inter-
ested (for example, IBM, MSFT, SUNW,
and so on). Each of these sets is finite, and
we quantify variables over the values of
one of these sets. Because quantification is
done only over finite sets, evaluations of
expressions with quantifications will
always terminate, giving a definite answer.

ConChat
ConChat lets applications obtain a vari-

ety of contextual information through its
smart spaces infrastructure, Gaia (see
http://choices.cs.uiuc.edu/gaia).4–6 Smart
spaces are ubiquitous computing environ-
ments that encompass physical spaces.
They require a software infrastructure that
turns traditional spaces into programma-
ble entities. Named after the Greek god-
dess of Earth, who embodied the idea of a
single, self-sufficient superorganism, Gaia
offers services to manage and program a
space and its associated state. It also offers
services to discover entities (both digital
and physical) contained in the space and
to store information about those entities

52 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

and export them to any other interested
services and applications. It uses Corba to
enable distributed computing and allows
events to be sent between components on

event channels. Producers and consumers
register in the channel to send and receive
events, respectively.

Various components in Gaia, called con-

text providers, obtain contextual informa-
tion from either sensors or other data
sources. They then let applications query
them about the information. Some context

JULY–SEPTEMBER 2002 PERVASIVEcomputing 53

Researchers have studied how to gather contexts and use

them to make applications more user friendly. The Context

Toolkit1 that Anind Dey developed consists of context widgets that

sense context, interpreters that provide higher-level contexts,

aggregators that aggregate related contexts, services that execute

actions on behalf of applications, and discoverers that find various

components. The Context Toolkit, which applications such as the

CybreMinder2 and Conference Assistant3 use, obtains contexts

and then takes action based on the contexts. However, it does not

provide a generic mechanism for writing rules about contexts or

doing context-based transformations of text.

Paul Castro and his colleagues4,5 have worked on developing

fusion services, which extract and infer useful context information

from sensor data using Bayesian networks. ConChat can also use

such machine-learning–based approaches (instead of the current

rule-based implementation) to determine the user’s activities and

how busy he or she is. Although machine-learning approaches are

more flexible than static rule-based approaches, they require a fair

bit of training before they can become effective.

John McCarthy has discussed the problem of transforming data

depending on the context.6 He proposed using lifting axioms to

relate the truth in one context to truth in another. Vipul Kashyap

and Amit Shet7 discuss the role of contexts and ontologies for

semantic interoperability. According to their view, contexts are used

to abstract from the content of an information repository. So-called

metadata contexts describe a repository’s information context.

Researchers have also extensively studied semantic interoperability

in the context of the Semantic Web,8 which aims to enable different

parties on the Web to understand the semantics of the material that

exists on the Web. Some efforts in this direction include developing

languages that describe the semantics of resources such as RDF (see

www.w3.org/RDF), development of ontologies,9 and ways of inter-

operating between different ontologies.10 However, all work in this

area, so far, has concentrated on achieving semantic interoperability

between information systems where there is a fixed schema and a

static context. Achieving semantic interoperability between humans

is more difficult, because natural language has no fixed schema and

the contexts surrounding humans keep changing.

The Affective Computing Projects in MIT’s Media Lab try to rec-

ognize emotions in individuals and communicate them suitably to

other people (http://affect.media.mit.edu). The Babble system11

transmits social cues such as audience size and how actively peo-

ple are participating in a multiparty chat scenario. It differs from

ConChat in that it presents virtual context to chat participants as

opposed to the physical context ConChat presents. The Hubbub12

system uses sounds to give awareness cues of other people. How-

ever, none of these systems provide a generic way of collecting or

reasoning about different types of contexts or trying to reduce

ambiguities in conversation.

REFERENCES

1. A.K. Dey and G.D. Abowd, “The Context Toolkit: Aiding the
Development of Context-Enabled Applications,” Proc. Work-
shop Software Eng. for Wearable and Pervasive Computing, ACM
Press, New York, 2000, pp. 434–441.

2. A.K. Dey and G.D. Abowd, “CybreMinder: A Context-Aware
System for Supporting Reminders,” Proc. 2nd Int’l Symp. Hand-
held and Ubiquitous Computing (HUC 2K), Springer-Verlag, New
York, 2000, pp. 172–186.

3. A.K. Dey et al., “The Conference Assistant: Combining Context-
Awareness with Wearable Computing,” Proc. 3rd Int’l Symp.
Wearable Computers (ISWC 99), IEEE CS Press, Los Alamitos,
Calif., 1999, pp. 21–28.

4. P. Castro and M. Richard, “Managing Context for Smart Spaces,”
IEEE Personal Comm., vol. 7, no. 5, Oct. 2000, pp. 21–28.

5. P. Castro et al., “Managing Context for Internet Video Confer-
ences: The Multimedia Internet Recorder and Archive,” Proc.
SPIE, vol. 2969, Jan. 2000.

6. J. McCarthy, “Notes on Formalizing Context,” Proc. 13th Int’l
Joint Conf. Artificial Intelligence (IJCAI 93), vol. 1, Morgan Kauf-
mann, San Francisco, Calif., 1993, pp. 555–560.

7. V. Kashyap and A. Sheth, “Semantic Heterogeneity in Global
Information Systems: The Role of Metadata, Context and Ontolo-
gies,” Cooperative Information Systems: Current Trends and
Applications, M. Papazoglou and G.Schlageter, eds., Academic
Press, London, 1996, pp. 139–178.

8. T. Berners-Lee et al., “A New Form of Web Content that Is Mean-
ingful to Computers Will Unleash a Revolution of New Possibilities,”
Scientific Amer., May 2001, www.scientificamerican.com/
2001/0501issue/0501berners-lee.html.

9. N. Guarino, “Formal Ontology and Information Systems,” Proc.
1st Int’l Conf. Formal Ontology in Information Systems, N. Guar-
ino, ed., IOS Press, Amsterdam, 1998, pp. 3–15; www.
ladseb.pd.cnr.it/infor/Ontology/Papers/FOIS98.pdf.

10. G. Wiederhold, Intelligent Integration of Information, Kluwer
Academic Press, Boston, 1996.

11. T. Erickson et al., “Socially Translucent Systems: Social Proxies,
Persistent Conversation, and the Design of Babble,” Proc. Human
Factors in Computing Systems (CHI 99), ACM Press, New York,
1999, pp. 72–79.

12. E. Isaacs, A. Walendowski, and D. Ranganathan, “Hubbub: A
Sound-Enhanced Mobile Instant Messenger that Supports Aware-
ness and Opportunistic Interactions,” Proc. Conf. Computer-
Human Interaction (CHI 02), ACM Press, New York, 2002, pp.
179–186.

Related Work

providers also have an event channel where
they send context events continuously.
Thus, applications can either query a con-
text provider or listen on the event channel
to get context information. Gaia also pro-
vides a service called the context engine
where context providers advertise the con-
text they provide. The context engine plays
the role of a lookup service and lets appli-
cations find appropriate context providers.

Architecture for context-aware chat
Figure 1 shows how ConChat works in

Gaia to enable context-aware chat. In a
context-aware chat scenario, we assume
that the two parties are in pervasive com-
puting environments A and B (PCE-A and
PCE-B). In our implementation, PCE-A
and PCE-B are rooms, but they could be
larger spaces. Both parties run the Con-
Chat application in their pervasive com-
puting environments—let’s call these appli-
cations ConChat-A and ConChat-B.

The first issue, as in any chat application,
is how ConChat-A and ConChat-B dis-
cover each other. Many approaches have
been used to solve this problem—using
machine IP addresses, email addresses,
names of users, and so on. Our focus,
though, is not the actual process used for
discovery. We use a fairly straightforward
scheme, with a central server where each
ConChat application registers itself and can
find other registered users. The registration
contains a TCP-IP address for the applica-
tion, and two ConChat applications com-
municate with each other by opening a
socket and exchanging messages. Although
this centralized approach is not the most
scalable way to develop a chat application,
it is sufficient for our purpose of exploring
how chat clients can exchange contextual
information.

Sharing contextual information
We now look at how ConChat sends

contextual information between users. In
our implementation, we can transfer the

1. Party location
2. Number of other people in the room
3. The identities of the other people in

the room

4. Room temperature, light, and sound
5. Other applications and devices run-

ning in the room
6. User’s mood (such as happy, sad, or

excited)
7. User’s status (such as “on the phone”

or “out to lunch”)
8. Activity in the room (such as a meet-

ing, lecture, or presentation)

Each party’s ConChat contacts the con-
text engine in its pervasive computing envi-
ronment and gets references to context
providers that can provide the contexts in
which it is interested. When ConChat
starts, it queries the context providers for
the current context and then listens on the
event channels associated with the context
providers for updates. In our implementa-
tion, ConChat relies on these context
providers to get the first four contexts
listed. Currently, we do not have sensors
that can automatically sense the user’s
mood and status, so we rely on the user to
provide this information.

To deduce activity in the room, ConChat
uses various other cues such as the num-
ber of people in the room, what applica-
tions are running, and the sound level in
the room. ConChat has various rules writ-
ten in first-order predicate calculus that it
evaluates to determine the room’s activity.
A few of these rules are

• Context(#people, Room 2401, >=, 3) ∧ Context(Appli-
cation, PowerPoint, Is, Running) => Context(Room
Activity, 2401, Is, Presentation)

• Context(#people, Room 2401, >=, 3) ∧ NOT Con-
text(Application, PowerPoint, Is, Running) => Con-
text(RoomActivity, 2401, Is, Meeting)

• Context(#people, Room 2401, =, 1) ∧ Context(Appli-
cation, Visual Studio, Is, Running) => Context(Room
Activity, 2401, Is, Individual Development)

• Context(#people, Room 2401, >, 5) ∧ Context(Sound
Level, Room 2401 , Is, High) ∧ ∃Entertainment-Application Y
Context(Application, Y, Is, Running) => Context(RoomAc-
tivity, 2401, Is, Party)

ConChat gets contextual information in
the form of a structure containing four
fields. This structure represents a context
predicate. For example, the location con-
text provider provides information such as

Context(Location, Tom, Entering, Room 2401). ConChat
maintains a view of its space’s current con-
text in the form of a set of true expressions
involving context. This information is
available to other parties with whom the
user might chat.

When user B wants information about
some particular context of user A, Con-
Chat-B sends a query to ConChat-A. For
example, if user B wants to know who is in
the room with A, ConChat-B would send a
query of the form Context(Location, X, In, Room
2401) to ConChat-A. ConChat-A has infor-
mation about who is in room 2401, as pro-
vided by the location context provider in
its room. It then evaluates the query based
on this information, similar to how Prolog
evaluates queries—that is, it tries to unify
the query with the set of true sentences it
has. Once ConChat-A evaluates the query,
it sends the results back to ConChat-B,
which then displays them to user B.

Alternatively, a user might ask to be noti-
fied when a certain condition is satisfied.
For example, B could ask to be notified
when some other person enters the room.
For this, assuming A is in Room 2401,
ConChat-B would send an expression of
the form ∃People Y Context(Location, Y, Entering, Room
2401) to Con-Chat A. ConChat-A would
then notify ConChat-B whenever the
expression evaluates to true.

An application like ConChat brings to
the fore many privacy issues, because users
might not want to expose their context to
all parties. However, ConChat lets users
specify which contexts can be sent to other
users. We use an access control table to
determine if a particular user can see a par-
ticular context. By default, no information
is exposed. A user can change this access
control table anytime ConChat is running.
For example, when two people who are
close to each other (for example, a husband
and wife) are chatting, they might not mind
exposing all their contextual information.
In this case, the husband might get an event
when his child enters the room in which
his wife is chatting. He might also get infor-
mation about his wife’s mood and the
room’s noise level and temperature. How-
ever, when the wife is chatting with her
boss, she might not want to reveal the other

54 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

applications running in her room (so that
her boss only knows that she is running the
simulation she was supposed to do).

Knowing the other person’s context also
helps resolve certain ambiguities that might
arise during conversation. For example,
when one person talks about “Mary” and
the other person knows multiple Marys,
there could be some confusion. However,
based on the context, we might be able to
resolve this ambiguity. For example, if a
Mary is in the same room as the first person,
then it becomes quite clear which Mary the
user is referring to. This might not always be
the case, but knowing the surrounding con-
text helps improve understanding.

One drawback of conventional chat
applications is that users are never quite
sure whether the other party is paying full
attention to the conversation. Context-
based chat can help users decide whether to
continue the conversation or chat again
later if they find the other party is too
involved in other activities. ConChat tries
to find out how busy the user is based on
what other applications he or she is run-
ning and the activities occurring in the
room. For example, if the user has multi-
ple ConChat sessions open or is also work-
ing on a PowerPoint or Word document,
or if a meeting is occurring in the room,
the client infers that the user is relatively
busy. We’re still working on fine-tuning
this inference—it’s difficult to accurately
determine how busy the user really is.

Avoiding semantic conflicts
One problem that plagues all conversa-

tions—both face to face and electronic—is
ensuring that all parties mean the same thing
when they say something. Semantic conflicts
typically arise because the two parties are in
different contexts. For example, when men-
tioning a time (say, 8:00 p.m.), the user
would typically refer to his or her own time
zone. However, if the other party were in a
different time zone, that person might inter-
pret the time to be in his or her own time
zone. Another example is if an American
and a Canadian are chatting, and the Cana-
dian says “$10.” The Canadian might have
meant 10 Canadian dollars, whereas the
American might take it as 10 US dollars.

Researchers have studied semantic inter-
operability between different systems in the
context of integrating heterogeneous data-
bases.7–9 Many of the approaches in this
area involve using enriched schemas that
contain semantic information about the
entities and their relationships. The prob-
lem is different in the case of chat. There
is no notion of schema, because natural
language is used. Hence, there is far less
structure.

There are three main causes of seman-
tic heterogeneity between information
systems:8

1. Naming conflicts occur when naming
schemes of information differ signifi-
cantly (for example, when synonyms
are used to refer to the same thing).

2. Confounding conflicts occur when
information items seem to have the
same meaning but differ in reality (for
example, a “hot” dish might either
mean that the dish is spicy or that its
temperature is high).

3. Scaling conflicts occur when different
reference systems are used to measure
a value (for example, price being mea-
sured in different currencies).

These causes of ambiguity also exist when
humans talk face to face. We try to resolve
scaling conflicts by using simple rules to
convert between different scales. Naming
conflicts are not normally a big problem
when humans talk with each other, because
they are normally aware of the different

synonyms for a word. Confounding con-
flicts are a bit more difficult to resolve—
they require fairly complex natural lan-
guage processing to disambiguate them. We
have managed to resolve simple cases of
confounding conflicts such as the words
“football” and “hockey,” which means dif-
ferent things for Americans and Europeans.

Some sources of semantic ambiguities
that occur when humans converse, which
are easy to correct given sufficient context
information, are

• Time
• Currency
• Units of various measurements
• Date formats (mm/dd/yy versus dd/

mm/yy)
• Terms like “football,” which mean dif-

ferent things based on context

ConChat has rules for handling each of
these semantic ambiguities. It first gathers
information about the user’s context,
using a service in Gaia that provides the
location (city and country) of the space,
the time zone, and the currency (it could
also get the information by contacting
Web sites that provide time zone and cur-
rency information). It also decides whether
the user prefers using the foot-pound-sec-
ond (FPS) system or the metric system, as
well as the format for dates (we use a
generic rule where American users prefer
the FPS system and the mm/dd/yy format
while users in other countries prefer the
alternative systems).

JULY–SEPTEMBER 2002 PERVASIVEcomputing 55

ConChat-AContext
engine

Location
context
provider

Temperature
context
provider

Devices
context
provider

Context
information

Registrations
and lookup

Flow of text
and context
messages

Lookup
of context
providers

Lookup
of context
providers

ConChat-B Context
engine

Location
context
provider

Applications
context
provider

Sound-level
context
provider

Context
information

Central
registration

server
Pervasive computing

environment A
Pervasive computing

environment B

Figure 1. Architecture for context-aware
chat.

The recipient’s ConChat attempts to
remove semantic ambiguities in received
messages by comparing the sender and
recipient’s contexts. We use fairly simple pat-
tern-matching algorithms to see if the text
contains any ambiguous terms. For exam-
ple, the presence of a number and currency
symbol such as “$” or “Yen” indicates that
the conversation is about money. ConChat
then tags these potential ambiguities with
information about what it thinks the sender
meant. In some cases, it converts the text
into a format that the receiver will under-
stand correctly; in other cases, it just
explains the sender’s context. For example,
if the phrase “let’s talk again at 8:00” is pre-
sent in the message, it tags the phrase with
the sender’s time zone and displays the fol-
lowing to the user: “Let’s talk again at 8:00
(! –5:00 (EST) !).” This reduces the possi-
bility of misunderstanding. The receiver’s
ConChat queries the sender’s ConChat for
his or her time zone. This query occurs just
once per session, the first time an ambiguity
is detected (it is unlikely that a context such
as the user’s time zone will change during a
session). However, we don’t store such con-
texts across sessions because they might
change between sessions.

We use a rule-based system for handling
these semantic ambiguities. Some exam-
ples include

• AppearsText(“Football”) ∧ Context(Location-Country,
Sender, In, Canada ∨ USA) ∧ Context(Location-Country,
Receiver, In, France ∨ Germany ∨ UK) → Tag-
With(“American Football”)

• Context(Currency, Sender, Is, X) ∧ AppearsMoney(X, N)
∧ Context(Currency, Receiver, Is, Y) ∧ (X ≠ Y) →
TagWith(ConvertCurrency(N, X, Y))

The set of rules that ConChat uses to
resolve ambiguities are written as a script
file. We have developed a simple scripting
language modeled on Prolog for express-
ing these rules. Thus, we can add more
rules at any time.

The recipient’s ConChat applies these
rules whenever the text contains any of the
potential ambiguities we have listed. The
first rule is applied when “football”
appears in the text, the sender is from
Canada or the US, and the receiver is in
France, Germany, or the UK. The receiver’s
ConChat gets the sender’s country by
querying the sender’s ConChat.

In the second rule, N, X, and Y are vari-
ables (variables are in capital letters). The
predicate AppearsMoney evaluates to true if
money of value N expressed in currency X
appears in the text. The recipient’s Con-
Chat gets the sender’s currency by query-
ing the sender’s ConChat. The convert
function converts the number N from the
currency of country X to the currency of

country Y. It gets the required conversion
factor by contacting an appropriate Web
site. It would thus tag $10 as $10 (! 11.55
Euro !) if the sender were in the US and the
recipient were in France. ConChat evalu-
ates rules involving variables similar to
how Prolog handles logic queries—it tries
to unify the rule with information it has
and, in this process, bind the variables to
values (or sets of values).

We have similar rules for converting
between the FPS and metric systems. For
this, ConChat uses a conversion table,
which it stores internally. So, 10 kgs gets
tagged as 10 kgs (! 22 pounds !). We also
have rules for tagging different date for-
mats. So, 01/10/02 would be tagged as
01/10/02 (! mm/dd/yy !) if the sender were
an American and the receiver French.

ConChat is not perfect. Removing all
semantic ambiguities from text in English
is difficult. ConChat solves only a small
part of the problem, but it’s a first step
toward eliminating semantic conflicts in
chat sessions.

User interface
We have developed a user interface for

ConChat for experimenting with transfer-
ring different types of contexts and resolv-
ing various semantic ambiguities. This user
interface is not meant for the average end
user. Once we have a better understanding
of the various issues involved in context-
aware chat, we will work on making the
interface easier to use and developing bet-
ter ways of conveying the other party’s con-
text.

Figure 2 shows ConChat’s user interface.
The top panel lets users set their mood and
status. Users can also determine the amount
of privacy they want by editing an access
control table, which determines what con-
texts are visible and to whom and stores
these preferences for future sessions. Users
can also choose which contexts of the other
party they want to know about. Selecting
one of these contexts (such as “Location,”
or “Other People in Room”) gives users the
current context. It also lets them specify cer-

56 PERVASIVEcomputing http://computer.org/pervasive

Figure 2. ConChat user interface.

C O N T E X T - A W A R E C O M P U T I N G

tain conditions based on the other party’s
context and receive a notification when this
condition is satisfied. Finally, the bottom
panel shows a chat session’s transcript. It
has an example of tagging an ambiguous
time. Only the recipient sees the tags—not
the sender. Users can also send instructions
to their ConChat client using the Send Mes-
sage text box. In this way, they can frame
their own complex context queries or
request certain types of notifications.

There is great potential for future
work to produce a chat pro-
gram that is highly context
aware and can make chatting

electronically seem almost like chatting
face to face. We hope to incorporate dif-
ferent types of sensors into our system—
for example, emotion recognition soft-
ware3 that can detect the user’s mood
without the user explicitly entering it.3 Cer-
tain other kinds of contexts include know-
ing a user’s schedule and past activities. We
would also like to integrate multimedia
capabilities such as audio and video
streams and examine if different types of
contexts are relevant in such a scenario.
Another possibility is multiuser chat.

We also want to improve the user inter-
face and enable better semantic interoper-
ability between the parties. We are explor-
ing how to better convey contextual
information and let users easily frame com-
plex context queries on their own. We
would like to use natural language process-
ing to determine the context in which some-
thing was said (for example, based on what
was said before) and indicate this context
to the user. We would also like to use other
contexts such as the users’ history of past
activities to disambiguate what they say.

We hope that our experiments with
ConChat will lead to a better understand-
ing of how context can be used to improve
electronic communication. More specifi-
cally, we would like to see which contexts
are really useful in enriching communica-
tion and how these contexts should be pre-
sented to the user.

ACKNOWLEDGMENTS
Grants NSF CCR 0086094 ITR and NSF 99-72884
EQ from the US National Science Foundation sup-
port this research.

REFERENCES
1. T. Erickson et al., “Socially Translucent Sys-

tems: Social Proxies, Persistent Conversa-
tion, and the Design of Babble,” Proc. Conf.
Human Factors in Computing Systems (CHI
99), ACM Press, New York, 1999.

2. E. Isaacs, A. Walendowski, and D. Ran-
ganathan, “Hubbub: A Sound-Enhanced
Mobile Instant Messenger that Supports
Awareness and Opportunistic Interactions,”
Proc. Conf. Computer-Human Interaction
(CHI 02), ACM Press, New York, 2002,
pp. 179–186.

3. I. Cohen, A. Garg, and T.S. Huang, “Emo-
tion Recognition using Multilevel-HMM,”
NIPS Workshop Affective Computing,
2000; www.ifp.uiuc.edu/~ashutosh/papers/
NIPS_emotion.pdf.

4. R. Cerqueira et al., “Gaia: A Development
Infrastructure for Active Spaces,” Workshop
on Application Models and Programming
Tools for Ubiquitous Computing, 2001;
http://choices.cs.uiuc.edu/gaia/papers.ubitoo
ls01.pdf.

5. M. Román et al., GaiaOS: An Infrastruc-
ture for Active Spaces, tech. report
UIUCDCS-R-2001-2224 UILU-ENG-2001-
1731, Dept. of Computer Science, Univ. of
Illinois, Urbana-Champaign, 2001.

6. M. Román, C.K. Hess, and R.H. Campbell,
“Building Applications for Ubiquitous
Computing Environments,” Int’l Conf.
Pervasive Computing (Pervasive 2002),
Springer-Verlag, Berlin, 2002.

7. H.G. Cheng, Representing and Reasoning
about Semantic Conflicts in Heterogeneous
Information Sources, doctoral dissertation,
Sloan School of Management, MIT, Cam-
bridge, Mass., 1997.

8. H.G. Cheng et al., “Context Interchange:
New Features and Formalisms for the Intel-
ligent Integration of Information,” TOIS,
vol. 17, no. 3, 1999, pp. 270–293.

9. A. Faquhar et al., “Integrating Information
Sources Using Context Logic,” Proc. AAAI-
95 Spring Symp. Information Gathering
from Distributed Heterogeneous Environ-
ments, AAAI Press, Menlo Park, Calif.,
1995.

For more information on this or any other
computing topic, please visit our Digital Library
at http://computer.org/publications/dlib.

JULY–SEPTEMBER 2002 PERVASIVEcomputing 57

the AUTHORS

Anand Ranganathan is
pursuing his PhD in
computer science at the Uni-
versity of Illinois at Urbana-
Champaign. His research
interests include experiment-
ing with different ways of
gathering context and using

contextual information to make applications
more intelligent in their interaction with humans.
He is also interested in the problem of modeling
context effectively and trying to infer different
types of contexts from sensed data. Other inter-
ests include security and data management in
pervasive computing environments, mobile com-
puting, and wearable computing. He received his
BTech in computer science from the Indian Insti-
tute of Technology in Madras, India. Contact him
at 3310, DCL, 1304 W. Springfield Ave., Urbana,
IL 61801; ranganat@uiuc.edu.

Roy H. Campbell is a profes-
sor in the Department of
Computer Science at the Uni-
versity of Illinois at Urbana-
Champaign. His research
interests are the problems,
engineering, and construc-
tion techniques of complex

system software. His current research projects
include the integration of video with the Web
and its applications, high-performance networks,
digital library system software, dynamically
adaptable operating systems that support con-
tinuous media, mobile computer security, and
performance issues of distributed shared-mem-
ory multiprocessors. He received his PhD from
the University of Newcastle upon Tyne. Contact
him at 3125 DCL, 1304 W. Springfield Ave.,
Urbana, IL 61801; rhc@uiuc.edu.

Arathi Ravi is a graduate stu-
dent in the Department of
Computer Science at the Uni-
versity of Illinois at Urbana-
Champaign. Her research
interests are in the area of per-
vasive computing and
human-computer interfaces.

She is interested in making use of context for
developing better interfaces to different applica-
tions. She received her BEng in computer science
and engineering from Madras University, India.
Contact her at 503 E. Stoughton, Apt. #8, Cham-
paign, IL 61820; aravi@uiuc.edu.

Anupama Mahajan is earn-
ing her MS in computer sci-
ence from the University of
Illinois at Urbana-Champaign.
Her research interests include
distributed computing, sys-
tem and functional verifica-
tion, and ubiquitous comput-

ing. She received the RajaRaman Award for
academic excellence in computer science in 2000.
She received her BS in computer science from the
Thapar Institute of Engineering and Technology in
India. Contact her at 302 S. Fourth St., Apt. #12,
Champaign, IL 61820; amahajan@uiuc.edu.

IEEE Distributed

Systems Online

supplements the

coverage in IEEE

Internet Computing

and IEEE Pervasive

Computing.

Each monthly issue

includes magazine

content and issue

addenda such as

interviews and

tutorial examples.

To receive regular updates, email

dsonline@computer.org

IEEE Distributed Systems Online brings you

peer-reviewed features, tutorials, and expert-moderated

pages covering a growing spectrum of important topics,

including

Grid Computing
❍

Security
❍

Distributed Agents
❍

Middleware
❍

Mobile and Wireless
❍

and more!

IEEE Distributed Systems Online recently

relaunched with a new design, and continues to provide

news, an events database, book reviews, and more.

Check out

to keep up with all that’s happening in distributed systems.

dsonline.computer.org

Relaunched with a New Design

