
1

6.S078 - Computer Architecture:
A Constructive Approach

Combinational circuits

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

L1-1http://csg.csail.mit.edu/6.S078February 8, 2012

Course Staff
Instructors

Arvind
arvind@csail.mit.edu

Joel Emer
emer@csail.mit.edu

Li-Shiuan Peh
peh@csail.mit.edu

Teaching Assistants Administration

Sally Lee
sally@csail.mit.edu

Myron King
mdk@csail.mit.edu

Abhinav Agarwal
abhiag@csail.mit.edu

2

Computing Devices Then…
EDSAC, University of Cambridge, UK, 1949

L01-3http://csg.csail.mit.edu/6.S078February 8, 2012

Computing Devices Now

Dramatic progress in terms of
size, speed, cost, reliability

L01-4
http://csg.csail.mit.edu/6.S078February 8, 2012

3

Computer architecture is
about designing machines
to meet some power,
performance, cost and
size constraintssize constraints

February 8, 2012 L1-5http://csg.csail.mit.edu/6.S078

The basics: How does a
program execute on hardware

A C program to add two arrays:
void vvadd(int n, int a[],

The hardware must know, for example,
 How to add and compare two numbers

int b[], int c[])
{ int i;
for (i = 0; i < n; i++)
c[i] = a[i] + b[i];

}

 Must have a place to keep the program and data
 Must know how to fetch instructions and data
 Must know how to sequence instructions:

 Fetch a[i], Fetch b[i], add, store results in c[i], increment i, …

L1-6http://csg.csail.mit.edu/6.S078February 8, 2012

4

Computer Architecture is
learning about how

programs execute and
designing hardware to

execute them efficiently

February 8, 2012 L1-7http://csg.csail.mit.edu/6.S078

Instruction Set Architecture
(ISA)

Computer architecture is the discipline of
designing and implementing interfaces g g p g
through which hardware and software interact
This interface is often referred to as the
Instruction Set Architecture (ISA)
 Examples: Intel’s IA-32, ARM, ARM-Thumb, PowerPC
 In this class we will use SMIPS, a subset of MIPS ISA

Implementations are deeply affected by the Implementations are deeply affected by the
technology issues; we will assume a simple
and abstract model of technology based on
Silicon

L1-8http://csg.csail.mit.edu/6.S078February 8, 2012

5

Computer Architecture
A method of constructing machines:
Machine descriptions which can be

simulated in software and
synthesized into hardware

Quantitative evaluation: T ti d ifi ti

February 8, 2012 L1-9http://csg.csail.mit.edu/6.S078

Quantitative evaluation:
To what extent designs

meet various design
criteria

Testing and verification:
Does the machine do what

it is supposed to do

The goals of this subject
Learn a constructive approach to studying
computer architecturep
Learn a new method of describing
architectures where there is less emphasis on
figures/diagrams and more emphasis on
executable descriptions
 Each architecture and each part of it would be

defined as executable code in Bluespec
Learn about test benches, including designing
your own
Learn about quantitative evaluation of your
designs

L1-10http://csg.csail.mit.edu/6.S078February 8, 2012

6

By the end-of-the-term you will
design six or more different design six or more different
computers of increasing complexity
and performance, and you will
quantitatively evaluate the
performance of your C programs on
these machines

February 8, 2012 L1-11http://csg.csail.mit.edu/6.S078

All the designs you do in this
course can be implemented on course can be implemented on

FPGAs or realized as ASICs
without significant additional
effort. However, lack of time

won’t permit us to explore this
aspect.

February 8, 2012 L1-12http://csg.csail.mit.edu/6.S078

7

Arithmetic-Logic Unit (ALU)
Op

- Add Sub

ALU performs all the arithmetic

Add, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...

 Result
Comp?

A

B
ALU

ALU performs all the arithmetic
and logical functions

L1-13http://csg.csail.mit.edu/6.S078February 8, 2012

We will first implement individual functions
and then combine them to form an ALU

Full Adder: A one-bit adder
function fa(a, b, c_in);

s = (a ^ b)^ c_in;
(b) | (i (^ b))c_out = (a & b) | (c_in & (a ^ b));

return {c_out,s};
endfunction

Structural code –
only specifies
interconnection
between boxes

L1-14http://csg.csail.mit.edu/6.S078February 8, 2012

8

Full Adder: A one-bit adder
corrected
function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);

Bit#(1) s = (a ^ b)^ c_in;
i #(1) (b) | (i (^ b))Bit#(1) c_out = (a & b) | (c_in & (a ^ b));

return {c_out,s};
endfunction

Bit#(1) a
declaration says that
a is one bit wide

{c_out,s} represents
bit concatenation

How big is {c_out,s}?

L1-15http://csg.csail.mit.edu/6.S078February 8, 2012

Types
Every expression and variable in a Bluespec
program has a type; sometimes it is specified p g yp ; p
explicitly and sometimes it is deduced by the
compiler
A type is a grouping of values:
 Integer: 1, 2, 3, …
 Bool: True, False
 Bit: 0,1
 A pair of Integers: Tuple2#(Integer, Integer)
 A function fname from Integers to Integers:

function Integer fname (Integer arg)

Thus we say an expression has a type or belongs
to a type The type of each expression is unique

L1-16http://csg.csail.mit.edu/6.S078February 8, 2012

9

Type declaration versus
deduction

The programmer writes down types of some
expressions in a program and the compiler p p g p
deduces the types of the rest of expressions
If the type deduction cannot be performed or
the type declarations are inconsistent then the
compiler complains

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
Bit#(1) s = (a ^ b)^ c in; #() () _ ;
Bit#(2) c_out = (a & b) | (c_in & (a ^ b));
return {c_out,s};

endfunction

L1-17http://csg.csail.mit.edu/6.S078February 8, 2012

2-bit Ripple-Carry Adder
function Bit#(3) add(Bit#(2) x, Bit#(2) y, Bit#(1) c0);

Bit#(2) s = 0;
i # 3 0 0Bit#(3) c; c[0] = c0;

let cs0 = fa(x[0], y[0], c[0]);
c[1] = cs0[1]; s[0] = cs0[0];

let cs1 = fa(x[1], y[1], c[1]);
c[2] = cs1[1]; s[1] = cs1[0];

return {c[2],s};
endfunction x[0] y[0] x[1] y[1]

fa fac[0]

s[0]

c[1]

s[1]

c[2]

fa is like a blackbox,
its internals are not
visible to the user. fa
can be used as long as
we understand its type
signature

L1-18http://csg.csail.mit.edu/6.S078February 8, 2012

10

“let” syntax
The “let” syntax: avoids having to write down
types explicitly types explicitly
 let cs0 = fa(x[0], y[0], c[0]);

 Bits#(2) cs0 = fa(x[0], y[0], c[0]);
The same

L1-19http://csg.csail.mit.edu/6.S078February 8, 2012

Parameterized types: #
A type declaration itself can be
parameterized – the parameters are parameterized the parameters are
indicated by using the syntax ‘#’
 For example Bit#(n) represents n bits and

can be instantiated by specifying a value of n
 Bit#(1), Bit#(32), Bit#(8), …

L1-20http://csg.csail.mit.edu/6.S078February 8, 2012

11

An w-bit Ripple-Carry Adder
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0);
Bit#(w) s; Bit#(w+1) c; c[0] = c0;
for(Integer i=0; i<w; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
return {c[w],s};
endfunction
// concrete instances of addN!
function Bit#(33) add32(Bit#(32) x, Bit#(32) y,

Bit#(1) c0) = addN(x,y,c0);
function Bit#(4) add3(Bit#(3) x, Bit#(3) y,

Bit#(1) c0) = addN(x,y,c0);
L1-21http://csg.csail.mit.edu/6.S078February 8, 2012

valueOf(w) versus w
Each expression has a type and a value and
these come from two entirely disjoint worldsthese come from two entirely disjoint worlds
n in Bit#(n) resides in the types world
Sometimes we need to use values from the
types world into actual computation. The
function valueOf allows us to do that
 Thus

i<w is not type correcti<w is not type correct
i<valueOf(w)is type correct

L1-22http://csg.csail.mit.edu/6.S078February 8, 2012

12

TAdd#(w,1) versus w+1
Sometimes we need to perform operations in
the types world that are very similar to the the types world that are very similar to the
operations in the value world
 Examples: Add, Mul, Log

We define a few special operators in the types
space for such operations
 Examples: TAdd#(m,n), TMul#(m,n), …

L1-23http://csg.csail.mit.edu/6.S078February 8, 2012

A w-bit Ripple-Carry Adder
corrected
function Bit#(TAdd#(w,1)) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0);
Bit#(w) s; Bit#(TAdd#(w,1)) c; c[0] = c0;
let valw = valueOf(w);
for(Integer i=0; i<valw; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
return {c[valw],s};
endfunction

L1-24http://csg.csail.mit.edu/6.S078February 8, 2012

13

Integer versus Int#(32)
In mathematics integers are unbounded but in
computer systems integers always have a p y g y
fixed size
Bluespec allows us to express both types of
integers, though unbounded integers are used
only as a programming convenience

for(Integer i=0; i<valw; i=i+1)
beginbegin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end

L1-25http://csg.csail.mit.edu/6.S078February 8, 2012

Static Elaboration phase
When Bluespec program are compiled, first
type checking is done and then the compiler yp g p
gets rid of many different constructs which
have no direct hardware meaning, like
Integers, loops

for(Integer i=0; i<valw; i=i+1) begin
let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

d

cs0 = fa(x[0], y[0], c[0]); c[1]=cs0[1]; s[0]=cs0[0];
cs1 = fa(x[1], y[1], c[1]); c[2]=cs1[1]; s[1]=cs1[0];
…
csw = fa(x[valw-1], y[valw-1], c[valw-1]);

c[valw] = csw[1]; s[valw-1] = csw[0];

end

L1-26http://csg.csail.mit.edu/6.S078February 8, 2012

