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Computing Devices Then…
EDSAC, University of Cambridge, UK, 1949
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Computing Devices Now

Dramatic progress in terms of 
size, speed, cost, reliability 
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Computer architecture is 
about designing machines 
to meet some power, 
performance, cost and 
size constraintssize constraints
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The basics: How does a 
program execute on hardware

A C program to add two arrays:
void vvadd( int n, int a[], 

The hardware must know, for example, 
 How to add and compare two numbers

int b[], int c[] )
{ int i;
for ( i = 0; i < n; i++ )
c[i] = a[i] + b[i];

} 

 Must have a place to keep the program and data
 Must know how to fetch instructions and data
 Must know how to sequence instructions:

 Fetch a[i], Fetch b[i], add, store results in c[i], increment i, … 
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Computer Architecture is 
learning about how 

programs execute and 
designing hardware to 

execute them efficiently
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Instruction Set Architecture 
(ISA)

Computer architecture is the discipline of 
designing and implementing interfaces g g p g
through which hardware and software interact 
This interface is often referred to as the 
Instruction Set Architecture (ISA)
 Examples: Intel’s IA-32, ARM, ARM-Thumb, PowerPC
 In this class we will use SMIPS, a subset of MIPS ISA

Implementations are deeply affected by the Implementations are deeply affected by the 
technology issues; we will assume a simple 
and abstract model of technology based on 
Silicon
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Computer Architecture
A method of constructing machines: 
Machine descriptions which can be 

simulated in software and 
synthesized into hardware

Quantitative evaluation: T ti  d ifi ti  
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Quantitative evaluation:
To what extent designs 

meet various design 
criteria

Testing and verification: 
Does the machine do what 

it is supposed to do

The goals of this subject
Learn a constructive approach to studying 
computer architecturep
Learn a new method of describing 
architectures where there is less emphasis on 
figures/diagrams and more emphasis on 
executable descriptions
 Each architecture and each part of it would be 

defined as executable code in Bluespec
Learn about test benches, including designing 
your own
Learn about quantitative evaluation of your 
designs
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By the end-of-the-term you will 
design six or more different design six or more different 
computers of increasing complexity 
and performance, and you will 
quantitatively evaluate the 
performance of your C programs on 
these machines
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All the designs you do in this 
course can be implemented on course can be implemented on 

FPGAs or realized as ASICs 
without significant additional 
effort. However, lack of time 

won’t permit us to explore this 
aspect.
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Arithmetic-Logic Unit (ALU)
Op

- Add  Sub  

ALU performs all the arithmetic 

Add, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...

 Result
Comp?

A

B
ALU

ALU performs all the arithmetic 
and logical functions 
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We will first implement individual functions 
and then combine them to form an ALU

Full Adder: A one-bit adder
function fa(a, b, c_in);

s = (a ^ b)^ c_in; 
( b) | ( i ( ^ b))c_out = (a & b) | (c_in & (a ^ b)); 

return {c_out,s}; 
endfunction

Structural code –
only specifies 
interconnection 
between boxes
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Full Adder: A one-bit adder
corrected
function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);

Bit#(1) s = (a ^ b)^ c_in; 
i #(1) ( b) | ( i ( ^ b))Bit#(1) c_out = (a & b) | (c_in & (a ^ b)); 

return {c_out,s}; 
endfunction

Bit#(1) a 
declaration says that 
a is one bit wide

{c_out,s} represents 
bit concatenation

How big is {c_out,s}?
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Types
Every expression and variable in a Bluespec
program has a type; sometimes it is specified p g yp ; p
explicitly and sometimes it is deduced by the 
compiler
A type is a grouping of values:
 Integer: 1, 2, 3, …
 Bool: True, False
 Bit: 0,1
 A pair of Integers: Tuple2#(Integer, Integer)
 A function fname from Integers to Integers: 

function Integer fname (Integer arg)

Thus we say an expression has a type or belongs 
to a type The type of each expression is unique
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Type declaration versus 
deduction

The programmer writes down types of some 
expressions in a program and the compiler p p g p
deduces the types of the rest of expressions
If the type deduction cannot be performed or 
the type declarations are inconsistent then the 
compiler complains

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
Bit#(1) s = (a ^ b)^ c in; #( ) ( ) _ ;
Bit#(2) c_out = (a & b) | (c_in & (a ^ b)); 
return {c_out,s}; 

endfunction
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2-bit Ripple-Carry Adder
function Bit#(3) add(Bit#(2) x, Bit#(2) y, Bit#(1) c0);

Bit#(2) s = 0;
i # 3 0 0Bit#(3) c; c[0] = c0;

let cs0 = fa(x[0], y[0], c[0]);
c[1] = cs0[1];  s[0] = cs0[0];

let cs1 = fa(x[1], y[1], c[1]);
c[2] = cs1[1];  s[1] = cs1[0];

return {c[2],s}; 
endfunction x[0] y[0] x[1] y[1]

fa fac[0]

s[0]

c[1]

s[1]

c[2]

fa is like a blackbox, 
its internals are not 
visible to the user. fa
can be used as long as 
we understand its type 
signature
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“let” syntax
The “let” syntax: avoids having to write down 
types explicitly types explicitly 
 let cs0 = fa(x[0], y[0], c[0]); 

 Bits#(2) cs0 = fa(x[0], y[0], c[0]); 
The same
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Parameterized types: #
A type declaration itself can be 
parameterized – the parameters are parameterized the parameters are 
indicated by using the syntax ‘#’
 For example Bit#(n) represents n bits and 

can be instantiated by specifying a value of n
 Bit#(1), Bit#(32), Bit#(8), …  
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An w-bit Ripple-Carry Adder
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0); 
Bit#(w) s; Bit#(w+1) c; c[0] = c0;
for(Integer i=0; i<w; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
return {c[w],s}; 
endfunction
// concrete instances of addN!
function Bit#(33) add32(Bit#(32) x, Bit#(32) y,

Bit#(1) c0) = addN(x,y,c0);
function Bit#(4) add3(Bit#(3) x, Bit#(3) y,

Bit#(1) c0) = addN(x,y,c0);
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valueOf(w) versus w 
Each expression has a type and a value and 
these come from two entirely disjoint worldsthese come from two entirely disjoint worlds
n in Bit#(n) resides in the types world
Sometimes we need to use values from the 
types world into actual computation. The 
function valueOf allows us to do that
 Thus 

i<w is not type correcti<w is not type correct
i<valueOf(w)is type correct
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TAdd#(w,1) versus w+1 
Sometimes we need to perform operations in 
the types world that are very similar to the the types world that are very similar to the 
operations in the value world
 Examples: Add, Mul, Log

We define a few special operators in the types 
space for such operations
 Examples: TAdd#(m,n), TMul#(m,n), …
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A w-bit Ripple-Carry Adder
corrected
function Bit#(TAdd#(w,1)) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0); 
Bit#(w) s; Bit#(TAdd#(w,1)) c; c[0] = c0;
let valw = valueOf(w);
for(Integer i=0; i<valw; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
return {c[valw],s}; 
endfunction
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Integer versus Int#(32)
In mathematics integers are unbounded but in 
computer systems integers always have a p y g y
fixed size
Bluespec allows us to express both types of 
integers, though unbounded integers are used 
only as a programming convenience

for(Integer i=0; i<valw; i=i+1)
beginbegin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
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Static Elaboration phase
When Bluespec program are compiled, first 
type checking is done and then the compiler yp g p
gets rid of many different constructs which 
have no direct hardware meaning, like 
Integers, loops

for(Integer i=0; i<valw; i=i+1) begin
let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

d

cs0 = fa(x[0], y[0], c[0]); c[1]=cs0[1]; s[0]=cs0[0]; 
cs1 = fa(x[1], y[1], c[1]); c[2]=cs1[1]; s[1]=cs1[0]; 
…
csw = fa(x[valw-1], y[valw-1], c[valw-1]); 

c[valw] = csw[1]; s[valw-1] = csw[0]; 

end

L1-26http://csg.csail.mit.edu/6.S078February 8, 2012


