
1

6.S078 - Computer Architecture:
A Constructive Approach

Introduction to SMIPS

Li-Shiuan Peh
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

February 22, 2012 L5-1 http://csg.csail.mit.edu/6.S078

! Instructions are bits (i.e., as numbers)
! Programs are stored in memory

!  to be read or written just like data

! Fetch & Execute Cycle
!  Instructions are fetched and put into a special register
!  Bits in the register "control" the subsequent actions
!  Fetch the next instruction and continue

• memory for data, programs,
•  compilers, editors, etc.

Stored Program Concept

• Treating Instructions in
the same way as Data

2

Multiple Levels of
Representation
•  High Level

Language
Program

•  Assembly
Language
Program

•  Machine Language
Program

•  Control Signal
Specification

• Compiler

• Assembler

• Machine
Interpretation

•  temp = v[k];
•  v[k] = v[k+1];
•  v[k+1] = temp;

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

• 0000 1001 1100 0110 1010 1111 0101 1000
• 1010 1111 0101 1000 0000 1001 1100 0110
• 1100 0110 1010 1111 0101 1000 0000 1001
• 0101 1000 0000 1001 1100 0110 1010 1111

• ALUOP[0:3] <= InstReg[9:11] & MASK
• High and low signals on control lines

Instruction Set
Architecture (ISA)

! Programmer’s view of the
computer
!  Instructions, operands

February 22, 2012 L5-4 http://csg.csail.mit.edu/6.S078

3

Example
ISAs

! Intel 80x86
! ARM
! IBM/Motorola PowerPC
! HP PA-RISC
! Oracle/Sun Sparc
! 6.004’s Beta

Why MIPS? It’s simple!
Most taught ISA

4

MIPS I Instruction
Set Architecture

! Instruction Categories
!  Load/Store
!  Computational
!  Jump and Branch
!  Floating Point

"  coprocessor
!  Memory Management
!  Special

• OP

• OP

• OP

• rs • rt • rd • sa • funct

• rs • rt • immediate

• jump target

• 3 Instruction Formats: all 32 bits wide

• r0 - r31

• PC
• HI
• LO

• Registers

• SMIPS: a subset of the full MIPS32 ISA

SMIPS Registers: Fast
Locations for Data

! 32 32-bit registers: $0, $1, … , $31
!  operands for integer arithmetic
!  address calculations
!  temporary locations
!  special-purpose functions defined by convention

! 1 32-bit Program Counter (PC)
! 2 32-bit registers HI & LO:

!  used for multiply & divide

5

MIPS arithmetic
! All instructions have 3 operands
! Operand order is fixed (destination first)

Example:

• C code: A = B + C
• MIPS code: add $s0, $s1, $s2

• C code: A = B + C + D;

 E = F - A;

• MIPS code: add $t0, $s1, $s2

 add $s0, $t0, $s3
 sub $s4, $s5, $s0

MIPS Load-Store
Architecture

! Every operand must be in a register (a few
exceptions)

! Variables have to be loaded in registers.
! Results have to be stored in memory.

• a = b + c
• d = a + b

• load b in register Rx
• load c in register Ry
• Rz = Rx + Ry
• store Rz in a

• Rt = Rz + Rx
• store Rt in d

• more variables than registers, so need explicit load and stores.

6

Memory Organization

! Viewed as a large, single-dimension array, with an
address.

! A memory address is an index into the array
! "Byte addressing" means that the index points to a

byte of memory.

• 0
• 1
• 2
• 3
• 4
• 5
• 6
• ...

• 8 bits of data

• 8 bits of data

• 8 bits of data

• 8 bits of data

• 8 bits of data

• 8 bits of data

• 8 bits of data

• Q: How to specify a memory location?

Load & Store
Instructions
! Base+Offset addressing mode: offset

(base register)
 e.g., 32($s3)

! Example:
!  C code: A[8] = h + A[8];

"  A: an array of 100 words
"  the base address of the array A is in $s3

!  MIPS code:
 lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 32($s3)

! Store word has destination last

• base register: $s3
• offset: 32

7

Example: Compiling using a
Variable Array Index

! C code: g = h + A[i]
 $s3: base register for A
 g, h, i: $s1, $s2, $s4

! MIPS code:
add $t1, $s4, $s4 # $t1 = 2 * i
add $t1, $t1, $t1 # $t1 = 4 * i

add $t1, $t1, $s3 # $t1 = address of A[i]
lw $t0, 0($t1) # $t0 = A[i]

add $s1, $s2, $t0 # g = h + A[i]

LUI instruction

! Load upper immediate
! LUI rt, zero-ext-imm
! Shifts 16-bit immediate into high-

order 16 bits, with 16 zeros in low
order bits -> rt

! How is LUI useful?

February 22, 2012 L5-14 http://csg.csail.mit.edu/6.S078

8

! Decision making instructions
!  alter the control flow,
!  i.e., change the "next" instruction to be executed

! MIPS conditional branch instructions:

 bne $t0, $t1, Label
 beq $t0, $t1, Label

! Example: if (i==j) h = i + j;

 bne $s0, $s1, Label
 add $s3, $s0, $s1
 Label:

Control: bne & beq

SLT
instructions

•  Set if less than
•  E.g. SLTI rt, rs, signed-imm
If (rs < imm), rt=1, else rt=0

What is SLT used for?

9

! MIPS unconditional branch instructions:
 j label

•  Example:

if (i!=j) beq $s4, $s5, Lab1
 h=i+j; add $s3, $s4, $s5
else j Lab2
 h=i-j; Lab1: sub $s3, $s4, $s5

 Lab2: ...

•  PC <- PC + 4 + 4*SEXT(literal)

Jumps (J, JAL, JR, JALR)

Jumps

! JAL target (jump and link)
!  PC+8 -> R31
!  Why PC+8?
!  How is JAL useful?

February 22, 2012 L5-18 http://csg.csail.mit.edu/6.S078

10

Jumps

! JR rs
!  Jumps to address in register

! PC <- Reg[rs]

! JR vs. J or JAL?

February 22, 2012 L5-19 http://csg.csail.mit.edu/6.S078

Jumps

! JALR – Jump and link register
! JALR rd, rs

!  Jumps to rs
!  Writes link address into rd

! Why JALR vs. JAL?

February 22, 2012 L5-20 http://csg.csail.mit.edu/6.S078

11

MIPS: Stack detective!

! Call procedure: jump and link (jal)
! Return from procedure: jump register

(jr)
! Argument values: $a0 - $a3
! Return value: $v0
! Template:

!  Call setup
!  Prologue
!  Epilogue
!  Return cleanup

February 22, 2012 L5-21 http://csg.csail.mit.edu/6.S078

February 22, 2012 L5-22 http://csg.csail.mit.edu/6.S078

12

February 22, 2012 L5-23 http://csg.csail.mit.edu/6.S078

Procedure call setup
1.  Place current parameters into stack (space

already allocated by caller of this
procedure)

2. Save any TEMPORARY registers that need
to be preserved across the procedure call

3.  Place first 4 parameters to procedure into
$a0-$a3

4.  Place remainder of parameters to
procedure into allocated space within the
stack frame

February 22, 2012 L5-24 http://csg.csail.mit.edu/6.S078

13

Procedure call setup

February 22, 2012 L5-25 http://csg.csail.mit.edu/6.S078

Prologue

1.  allocate space for stack frame
2.  save return address in stack frame
3.  copy needed parameters from stack frame

into registers
4.  save any needed SAVED registers into

current stack frame

February 22, 2012 L5-26 http://csg.csail.mit.edu/6.S078

14

Time to actually call
function! #

February 22, 2012 L5-27 http://csg.csail.mit.edu/6.S078

Return cleanup

1.  copy needed return values and parameters
from $v0-v1, $a0-a3, or stack frame to
correct places

2.  restore any temporary registers from stack
frame (saved in call setup)

February 22, 2012 L5-28 http://csg.csail.mit.edu/6.S078

15

Epilogue
1.  restore (copy) return address from stack frame into $ra
2.  restore from stack frame any saved registers (saved in

prologue)
3.  de-allocate stack frame (move $sp so the space for the

procedure's frame is gone)

February 22, 2012 L5-29 http://csg.csail.mit.edu/6.S078

MIPS coprocessor 0
instructions:mfc0, mtc0

! interrupts, exceptions, resets

! Beta vs MIPS

February 22, 2012 L5-30 http://csg.csail.mit.edu/6.S078

16

Exception Registers

! Not part of the register file.
!  Cause

"  Records the cause of the exception
!  EPC (Exception PC)

"  Records the PC where the exception occurred

! EPC and Cause: part of Coprocessor 0
! Move from Coprocessor 0

!  mfc0 $t0, EPC
!  Moves the contents of EPC into $t0

Exceptions

•  Save cause and exception PC
•  Jump to exception handler (0x0000_1100)
•  Exception handler:

–  Saves registers on stack
–  Reads the Cause register
•  mfc0 Cause, $t0
–  Handles the exception
–  Restores registers
–  Returns to program
•  mfc0 EPC, $k0
•  jr $k0

17

Exception Causes

February 22, 2012 L5-33 http://csg.csail.mit.edu/6.S078

Cause register

February 22, 2012 L5-34 http://csg.csail.mit.edu/6.S078

18

Reset

! mtc0 zero, $9 #init counter
! mtc0 zero, $11 #timer interrupt
! :
! :
! J kernel_init

February 22, 2012 L5-35 http://csg.csail.mit.edu/6.S078

