6.5078 - Computer Architecture:
A Constructive Approach

Introduction to SMIPS

Li-Shiuan Peh
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-1

Stored Program Concept

Instructions are bits (i.e., as numbers)
4 Programs are stored in memory

= to be read or written just like data Treating Instructions in
Memory the same way as Data

Accounting program !

]
! I
| (machine code) |

T eator program 1 memory for data, programs,
| (machine code) | - -
et / compilers, editors, etc.

i
I
(machine code) :

Processor

S0
o
<
g
(]
9
o
Q
o
=
o

4 Fetch & Execute Cycle

= Instructions are fetched and put into a special register
= Bits in the register "control" the subsequent actions
= Fetch the next instruction and continue

Multiple Levels of
Representation .., - ..

High Level _ L
Langhage VK] = v[k+1];
Program v[k+1] = temp;
Compiler
Assembler
0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program 1100 0110 1010 1111 0101 1000 0000 1001
[] 0101 1000 0000 1001 1100 0110 1010 1111
Machine
Interpretation
Control Signal { = .
Spedification ALUOP[0:3] <= InstReg[9:11] & MASK

High and low signals on control lines

Instruction Set
Architecture (ISA)

#®Programmer’s view of the
computer
» Instructions, operands

February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-4

Example
ISAs

#®Intel 80x86

®ARM

#IBM/Motorola PowerPC
®HP PA-RISC
#®Oracle/Sun Sparc
€6.004's Beta

It's simple!
Most taught ISA

Why MIPS?

World’s First Android 4.0
(Ice Cream Sandwich) Tablet
available in the market

—Yes it's MIPS!

You just don’t Know it.

The #1 processor in digital TVs

lc(eel eoundyou @

MIPS I Instruction
Set Architecture

Registers
e Instructlon Categories ro - r31
Load/Store
= Computational
= Jump and Branch
= Floating Point
+ coprocessor l PC |
= Memory Management ‘ HI]
= Special
3 Instruction Formats: all 32 bits wide
’ oP |rs Irt | rd|sa |funct‘
oP rs rt

oP jump target

-SMIPS: a subset of the full MIPS32 ISA

SMIPS Registers: Fast
Locations for Data

i @32 32-bit registers: $0, $1, ..., $31

operands for integer arithmetic
= address calculations
= temporary locations
special-purpose functions defined by convention

@ 1 32-bit Program Counter (PC)
@2 32-bit registers HI & LO:

used for multiply & divide

-

- @ All instructions have 3 operands

MIPS arithmetic

Operand order is fixed (destination first)

Example:
C code: A=B+C
MIPS code: add $s0, $s1, $s2

C code: A
E

MIPS code: add $t0, $sl1, $s2
add $s0, $t0, $s3
sub $s4, $s5, $s0

Every operand must be in a register (a few

MIPS Load-Store
Architecture

exceptions)
Variables have to be loaded in registers.
Results have to be stored in memory.

load b in register Rx

a=b+c load c in register Ry
d=a+b Rz = Rx + Ry
store Rz in a

Rt = Rz + Rx
store Rt in d

more variables than registers, so need explicit load and stores.

Memory Organization

7@ Viewed as a large, single-dimension array, with an
address.

4% A memory address is an index into the array

"Byte addressing" means that the index points to a
byte of memory.

Q| 8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data Q: How to specify a memory location?
8 bits of data

N B W N~

8 bits of data

Load & Store
Instructions

@ Base+Offset addressing mode: offset
(base register)
e.g., 32($s3)
& Example:
s« Ccode: A[8] =h + A[8];

¢ A: an array of 100 words
+ the base address of the array A is in $s3

base register: |$s3
offset: 32

= MIPS code:

1w S$t0, 32 ($s3)
add $t0, $s2, $tO
sw $t0, 32($s3)

Store word has destination last

Example: Compiling using a
Variable Array Index

- #C code: g=h + A[i]
$s3: base register for A
g, h, i: $s1, $s2, $s4

MIPS code:
add $t1, $s4, $s4 #$t1 =2 %
add $t1, $t1, $t1 #$tl =4 %
add s$t1, $t1, $s3 # $t1 = address of A[i]
Iw $t0, 0($t1) # $t0 = A[i]
add $s1, $s2, $t0 # g =h+ A[i]

LUI instruction

#®Load upper immediate
®LUI rt, zero-ext-imm

#Shifts 16-bit immediate into high-
order 16 bits, with 16 zeros in low
order bits -> rt

#®How is LUI useful?

February 22, 2012 http://csg.csail.mit.edu/6.5078

L5-14

Control: bne & beqg

7@ Decision making instructions
= alter the control flow,
= i.e., change the "next" instruction to be executed

MIPS conditional branch instructions:

bne $t0, $tl, Label
beg $t0, $tl, Label

& Example: if (i==j) h =i+ j;

bne $s0, $sl, Label
gdd—$s3—5$s0—S51
Label:

SLT
instructions

» Set if less than
« E.g. SLTI rt, rs, signed-imm
If (rs < imm), rt=1, else rt=0

What is SLT used for?

Jumps (J, JAL, JR, JALR)

* Example:

if (i!=9)
h=1+7;

else
h=i-7j;

7 & MIPS unconditional branch instructions:
J label

beg S$s4, $s5, Labl
add $s3, $s4, $s5
J Lab?2
Labl:
Lab2:

sub $s3, S$s4,

 PC <- PC + 4 + 4*SEXT(literal)

Jumps

February 22, 2012

@ JAL target (jump and link)
» PC+8 -> R31
= Why PC+8?
= How is JAL useful?

http://csg.csail.mit.edu/6.5078

L5-18

Jumps

®JR rs
= Jumps to address in register

®PC <- Reg[rs]

#®JR vs. J or JAL?

February 22, 2012 http://csg.csail.mit.edu/6.5078

L5-19

Jumps

#®JALR - Jump and link register

®JALR rd, rs
= Jumps to rs
= Writes link address into rd

®Why JALR vs. JAL?

February 22, 2012 http://csg.csail.mit.edu/6.5078

L5-20

10

MIPS: Stack detective!

Call procedure: jump and link (jal)

Return from procedure: jump register
(3r)

@ Argument values: $a0 - $a3

Return value: $v0

@ Template:
= Call setup
= Prologue
» Epilogue
= Return cleanup

February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-21
Register | Software Name .
Name | (from regdef.n) Use and Linkage

$0 Always has the value 0.

$at Reserved for the assembler.
Used for expression evaluations and to hold the integer type

$2..$3 vO-v1 function results. Also used to pass the static link when calling
nested procedures.
Used to pass the first 4 words of integer type actual

$4.97 a0-a3 arguments, their values are not preserved across procedure
calls.
Temporary registers used for expression evaluations; their

$8.8$15 to-t7
values aren’t preserved across procedure calls.

$16.523 | s0-57 Saved registers. Their values must be preserved across
procedure calls.
Temporary registers used for expression evaluations; their

$24.525 |89 values aren’t preserved across procedure calls.

$26..27 or)

$kt0. Skt1 kO-k1 Reserved for the operating system kernel.

$28 or $gp | gp Contains the global pointer.

$29 or $sp | sp Contains the stack pointer.
Contains the frame pointer (if needed); otherwise a saved

$30 or $ip | 1p register (like S0-57).

$31 ra Contains the return address and is used for expression
evaluation.

February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-22

11

Example from Prof. David Wood, University of Wisconsin-Madison

procedure: procA

input parameters: $a0 and $al

output (return value): $vO0

saved registers: $s0, $sl

temporary registers: $t0, stl

local variables: 5 integers named R, S, T, U, V
T, U,

procA calls procB with 5 parameters (R, S, V).

+

stack frame layout:

in $al 68($sp)
in $a0 64($sp)
v 60($sp) -

Y 56($sp)

T 52(s$sp)

S 48($sp)

R 44($sp)

stl 40(ssp)

sto 36($sp) -—- A's activation record
$ra 32(s$sp)

$sl 28($sp)

$s0 24(ssp)

out arg4 20(s$sp)

out $a3 16($sp)

out $a2 12($sp)

out $al 8($sp)

out $a0 4($sp) -

<-- $sp _—

-- where B's activation record
will be

February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-23

SRR U R T O S O I

Procedure call setup

1. Place current parameters into stack (space
already allocated by caller of this
procedure)

2. Save any TEMPORARY registers that need
to be preserved across the procedure call

3. Place first 4 parameters to procedure into
$a0-%$a3

4. Place remainder of parameters to

procedure into allocated space within the
stack frame

February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-24

12

Procedure call setup

call setup for call to procB
save current (live) parameters into the space specifically
allocated for this purpose within caller's stack frame

end prologue

February 22, 2012 http://csg.csail.mit.edu/6.5078

sw $a0, 64($sp) # only needed if values are 'live’
sw $al, 68($sp) # only need if values are 'live’
save any registers that need to be preserved across the call
sw $t0, 36($sp) # only need if values are 'live’
sw $tl, 40($sp) # only need if values are 'live’
put parameters into proper location
1w $a0, 44($sp) # load R into $a0
1w $al, 48($sp) # load S into $al
1w $a2, 52($sp) # load T into $a2
1w $a3, 56($sp) # load U into $a3
1w $t0, 60($sp) # load V into a temp register
sw $t0, 20($sp) # outgoing arg4 must go on the stack
#end call setup
February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-25
1. allocate space for stack frame
2. save return address in stack frame
3. copy needed parameters from stack frame
into registers
4. save any needed SAVED registers into
current stack frame
procA:
procedure prologue
sub $sp, $sp, 60 #allocate activation record, includd
space for maximum outgoing args
sw $ra, 32($sp) #save return address
sw $s0, 24($sp) # save 'saved' registers to stack
sw $sl, 28($sp) # save 'saved' registers to stack

L5-26

13

Time to actually call
function! ©

procedure call
jal procB
February 22, 2012 http://csg.csail.mit.edu/6.5078

L5-27

Return cleanup

1. copy needed return values and parameters
from $v0-v1, $a0-a3, or stack frame to
correct places

2. restore any temporary registers from stack
frame (saved in call setup)

return cleanup for call to procB
restore saved registers

lw sa0, 64($sp)

lw sal, 68($sp)

lw $t0, 36($sp)

lw stl, 40($sp)

return values are in $v0 and $vl

February 22, 2012 http://csg.csail.mit.edu/6.5078

L5-28

14

Epilogue

1.
2.

3.

restore (copy) return address from stack frame into $ra

restore from stack frame any saved registers (saved in
prologue)

de-allocate stack frame (move $sp so the space for the
procedure's frame is gone)

procedure epilogue

restore return address

lw sra, 32($sp)

restore $s registers saved in prologue
lw $s0, 24($sp)

lw $s1, 28($sp)

put return values in $v0 and $vl

mov $v0, $tO

deallocate stack frame

add $sp, $sp, 60

return
jr sra
February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-29
MIPS coprocessor O
‘instructions:mfc0, mtcO
@®interrupts, exceptions, resets
@ Beta vs MIPS
February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-30

15

Exception Registers

Not part of the register file.

m Cause
+ Records the cause of the exception

= EPC (Exception PC)
+ Records the PC where the exception occurred
® EPC and cause: part of Coprocessor O

@ Move from Coprocessor 0
m mfcO $t0, EPC
= Moves the contents of EpPC into $t0

Exceptions

| Save cause and exception PC
Jump to exception handler (0x0000 1100)

Exception handler:
Saves registers on stack
Reads the Cause register
mfcO0 Cause, $t0
Handles the exception
Restores registers

Returns to program
mfcO0 EPC, $kO
jr $kO

16

'Exception Causes

[t

ExcCode | Mnemonic | Description
0 | Hint External interrupt.
2 | Tint Timer interrupt.
4 | AdEL Address or misalignment error on load.
5 | AdES Address or misalignment error on store.
6 | AdEF Address or misalignment error on fetch.
8 | Sys Syscall exception.
9| Bp Breakpoint exception.
10 | RI Reserved instruction exception.
11 | CpU Coprocessor Unusable.
12 | Ov Arithmetic Overflow.
February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-33
Cause register
31 30 2928 2716 15 8 7 6 2 10
[BD[O] CE] 0 | IP [O0]ExcCode]| 0 |
1 1 2 12 8 5
February 22, 2012 http://csg.csail.mit.edu/6.5078 L5-34

17

Reset

#®mtc0 zero, $9 #init counter
®mtcO zero, $11 #timer interrupt
@

@

@] kernel_init

February 22, 2012 http://csg.csail.mit.edu/6.5078

L5-35

18

